Rapid Detection of Streptomycin-Resistant Mycobacterium tuberculosis by rpsL-Restriction Fragment Length Polymorphism

Document Type : Original Article

Authors

1 Department of Microbiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

2 Department of Medical Parasitology and Mycology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

3 Department of Microbiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran

4 Mollahadi Sabzevari Tuberculosis Center, Isfahan, Iran

Abstract

Background: Molecular methods for the detection of drug-resistant tuberculosis (DR-TB) are potentially more rapid than conventional culture-based drug susceptibility testing, facilitating the commencement of appropriate treatment for patients with DR-TB. The aim of this study was to evaluate and develop polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assays for the detection of mutations within rpsL, and for the determination of streptomycin (STR) resistance in Mycobacterium tuberculosisMaterials and Methods: Clinical specimens were collected from individuals with suspected TB referred to the TB Center of Isfahan' from which 205 M. tuberclosis were isolated and identified by conventional phenotypic methods. The minimum inhibitory concentration of STR for all isolates was determined using the proportion method and 10 isolates were recognized as STR resistant M. tuberculosis. The effect of genetic alterations in the rpsL gene for these resistant isolates were investigated by PCR-RFLP method. Results: Three (30%) isolates showed point mutation at codon 43 by RLFP analysis. Conclusion: Our results suggest that RFLP analysis of the rpsL gene is useful for the rapid prediction of STR resistant strains of M. tuberculosis.

Keywords

1.
Moore DA, Evans CA, Gilman RH, Caviedes L, Coronel J, Vivar A, et al. Microscopic-observation drug-susceptibility assay for the diagnosis of TB. N Engl J Med 2006;355:].  Back to cited text no. 1
    
2.
Helb D, Jones M, Story E, Boehme C, Wallace E, Ho K, et al. Rapid detection of Mycobacterium tuberculosis and rifampin resistance by use of on-demand, near-patient technology. J Clin Microbiol 2010;48:229-37.  Back to cited text no. 2
    
3.
Serkani JE, Isfahani BN, Safaei HG, Kermanshahi RK, Asghari G. Evaluation of the effect of Humulus lupulus alcoholic extract on rifampin-sensitive and resistant isolates of Mycobacterium tuberculosis. Res Pharm Sci 2012;7:235-42.  Back to cited text no. 3
    
4.
Honoré N, Cole ST. Streptomycin resistance in mycobacteria. Antimicrob Agents Chemother 1994;38:238-42.  Back to cited text no. 4
    
5.
Comroe JH Jr. Pay dirt: The story of streptomycin. Part II. Feldman and Hinshaw; Lehmann. Am Rev Respir Dis 1978;117:957-68.  Back to cited text no. 5
    
6.
Johnson R, Streicher EM, Louw GE, Warren RM, Van Helden PD, Victor T. Drug Resistance in M. tuberculosis. Understanding the Mechanisms of Drug Resistance in Enhancing Rapid Molecular Detection of Drug Resistance in Mycobacterium tuberculosis; 2007. p. 7.  Back to cited text no. 6
    
7.
Centers for Disease Control and Prevention (CDC); American Thoracic Society. Update: Adverse event data and revised American Thoracic Society/CDC recommendations against the use of rifampin and pyrazinamide for treatment of latent tuberculosis infection – United States, 2003. MMWR Morb Mortal Wkly Rep 2003;52:735-9.  Back to cited text no. 7
    
8.
Porter J. WHO Model Prescribing Information: Drugs Used in Mycobacterial Diseases. Geneva: World Health Organization; 1991. p. 40. [Price Sw. fr. 9.00/US $8.10 (in developing countries Sw. fr 6.30). No longer published by Elsevier; 1992].  Back to cited text no. 8
    
9.
Winder FG. Mode of action of the antimycobacterial agents and associated aspects of the molecular biology of the mycobacteria. Biol Mycobact 1982;1:353-438.  Back to cited text no. 9
    
10.
Sreevatsan S, Pan X, Stockbauer KE, Williams DL, Kreiswirth BN, Musser JM. Characterization of rpsL and rrs mutations in streptomycin-resistant Mycobacterium tuberculosis isolates from diverse geographic localities. Antimicrob Agents Chemother 1996;40:1024-6.  Back to cited text no. 10
    
11.
Douglass J, Steyn LM. A ribosomal gene mutation in streptomycin-resistant Mycobacterium tuberculosis isolates. J Infect Dis 1993;167:1505-6.  Back to cited text no. 11
    
12.
Blakemore R, Story E, Helb D, Kop J, Banada P, Owens MR, et al. Evaluation of the analytical performance of the Xpert MTB/RIF assay. J Clin Microbiol 2010;48:2495-501.  Back to cited text no. 12
    
13.
Ignatyeva O, Kontsevaya I, Kovalyov A, Balabanova Y, Nikolayevskyy V, Toit K, et al. Detection of resistance to second-line antituberculosis drugs by use of the genotype MTBDRsl assay: A multicenter evaluation and feasibility study. J Clin Microbiol 2012;50:1593-7.  Back to cited text no. 13
    
14.
Nhu NT, Lan NT, Phuong NT, Chau NV, Farrar J, Caws M. Association of streptomycin resistance mutations with level of drug resistance and Mycobacterium tuberculosis genotypes. Int J Tuberc Lung Dis 2012;16:527-31.  Back to cited text no. 14
    
15.
Spies FS, Ribeiro AW, Ramos DF, Ribeiro MO, Martin A, Palomino JC, et al. Streptomycin resistance and lineage-specific polymorphisms in Mycobacterium tuberculosis gidB gene. J Clin Microbiol 2011;49:2625-30.  Back to cited text no. 15
    
16.
Cooksey RC, Morlock GP, McQueen A, Glickman SE, Crawford JT. Characterization of streptomycin resistance mechanisms among Mycobacterium tuberculosis isolates from patients in New York City. Antimicrob Agents Chemother 1996;40:1186-8.  Back to cited text no. 16
    
17.
Chaoui I, Sabouni R, Kourout M, Jordaan AM, Lahlou O, Elouad R, et al. Analysis of isoniazid, streptomycin and ethambutol resistance in Mycobacterium tuberculosis isolates from Morocco. J Infect Dev Ctries 2009;3:278-84.  Back to cited text no. 17
    
18.
Wu XQ, Lu Y, Zhang JX, Liang JQ, Zhang GY, Li HM, et al. Detection of streptomycin resistance in Mycobacterium tuberculosis clinical isolates using four molecular methods in China. Yi Chuan Xue Bao 2006;33:655-63.  Back to cited text no. 18
    
19.
Katsukawa C, Tamaru A, Miyata Y, Abe C, Makino M, Suzuki Y. Characterization of the rpsL and rrs genes of streptomycin-resistant clinical isolates of Mycobacterium tuberculosis in Japan. J Appl Microbiol 1997;83:634-40.  Back to cited text no. 19
    
20.
Troesch A, Nguyen H, Miyada CG, Desvarenne S, Gingeras TR, Kaplan PM, et al. Mycobacterium species identification and rifampin resistance testing with high-density DNA probe arrays. J Clin Microbiol 1999;37:49-55.  Back to cited text no. 20
    
21.
Cuevas-Córdoba B, Cuellar-Sánchez A, Pasissi-Crivelli A, Santana-Álvarez CA, Hernández-Illezcas J, Zenteno-Cuevas R. rrs and rpsL mutations in streptomycin-resistant isolates of Mycobacterium tuberculosis from Mexico. J Microbiol Immunol Infect 2013;46:30-4.  Back to cited text no. 21
    
22.
van Embden JD, Cave MD, Crawford JT, Dale JW, Eisenach KD, Gicquel B, et al. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: Recommendations for a standardized methodology. J Clin Microbiol 1993;31:406-9.  Back to cited text no. 22
    
23.
Fukuda M, Koga H, Ohno H, Yang B, Hirakata Y, Maesaki S, et al. Relationship between genetic alteration of the rpsL gene and streptomycin susceptibility of Mycobacterium tuberculosis in Japan. J Antimicrob Chemother 1999;43:281-4.  Back to cited text no. 23
    
24.
Tracevska T, Jansone I, Broka L, Marga O, Baumanis V. Mutations in the rpoB and katG genes leading to drug resistance in Mycobacterium tuberculosis in Latvia. J Clin Microbiol 2002;40:3789-92.  Back to cited text no. 24