Document Type : Original Article
Authors
1 Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
2 Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
3 Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan; Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
4 Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
5 Department of Pilot Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
Abstract
Background: Angiogenesis which occurs mandatory in solid tumors, is a critical step in malignancy progression. Vascular endothelial growth factor (VEGF) is mainly responsible for angiogenesis process and facilitates the formation of new vessels. Distribution of monoclonal antibodies against VEGF or VEGF receptor (VEGFR) into the solid tumors is limited because of their huge dimensions. Moreover, many investigations have demonstrated the usefulness of immunotoxins to halt angiogenesis in solid tumors. Materials and Methods: We designed, expressed and evaluated the cytotoxicity of a novel nano-immunotoxin composed of VEGF splice variant containing 121 amino acids (VEGF121) and truncated the exotoxin A of Pseudomonas aeruginosa (PE38-KDEL). The fusion protein VEGF121-PE38 was successfully cloned and expressed in Escherichia coli, purified by Ni+ 2 affinity chromatography. The fusion protein was subsequently subjected to refolding using the reduced and oxidized glutathione. Results: The expression level of the fusion protein reached to 1 mg/ml. The VEGF121-PE38 immunotoxin showed a 59 KDa MW which had cytotoxic effect on HUVEC and 293/KDR cells as low and high expressing VEGFR2 cells, respectively. But the cytotoxicity on 293/KDR was 100 folds more than that of VEGFR2 low expressing cell HUVEC. Conclusion: The designed immunotoxin showed more selectivity for higher VEGFR2 expressing cells in vitro.
Keywords
1. | |
2. |
Vincenti V, Cassano C, Rocchi M, Persico G. Assignment of the vascular endothelial growth factor gene to human chromosome 6p21.3. Circulation 1996;93:1493-5. [PUBMED] |
3. |
Safran M, Kaelin WG Jr. HIF hydroxylation and the mammalian oxygen-sensing pathway. J Clin Invest 2003;111:779-83. [PUBMED] |
4. |
Veikkola T, Karkkainen M, Claesson-Welsh L, Alitalo K. Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res 2000;60:203-12. [PUBMED] |
5. |
Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999;13:9-22. [PUBMED] |
6. |
Houck KA, Leung DW, Rowland AM, Winer J, Ferrara N. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem 1992;267:26031-7. [PUBMED] |
7. |
Brown LF, Berse B, Jackman RW, Tognazzi K, Manseau EJ, Dvorak HF, et al. Increased expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in kidney and bladder carcinomas. Am J Pathol 1993;143:1255-62. [PUBMED] |
8. |
Brown JM, Giaccia AJ. The unique physiology of solid tumors: Opportunities (and problems) for cancer therapy. Cancer Res 1998;58:1408-16. [PUBMED] |
9. |
Wedge SR, Kendrew J, Hennequin LF, Valentine PJ, Barry ST, Brave SR, et al. AZD2171: A highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res 2005;65:4389-400. [PUBMED] |
10. | |
11. |
Allured VS, Collier RJ, Carroll SF, McKay DB. Structure of exotoxin A of Pseudomonas aeruginosa at 3.0-Angstrom resolution. Proc Natl Acad Sci U S A 1986;83:1320-4. [PUBMED] |
12. |
Kreitman RJ, Pastan I. Importance of the glutamate residue of KDEL in increasing the cytotoxicity of Pseudomonas exotoxin derivatives and for increased binding to the KDEL receptor. Biochem J 1995;307:29-37. [PUBMED] |
13. |
Kounnas MZ, Morris RE, Thompson MR, FitzGerald DJ, Strickland DK, Saelinger CB. The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein binds and internalizes Pseudomonas exotoxin A. J Biol Chem 1992;267:12420-3. [PUBMED] |
14. |
McKee ML, FitzGerald DJ. Reduction of furin-nicked Pseudomonas exotoxin A: An unfolding story. Biochemistry 1999;38:16507-13. [PUBMED] |
15. |
Carroll SF, Collier RJ. Active site of Pseudomonas aeruginosa exotoxin A. Glutamic acid 553 is photolabeled by NAD and shows functional homology with glutamic acid 148 of diphtheria toxin. J Biol Chem 1987;262:8707-11. [PUBMED] |
16. |
Kondo T, FitzGerald D, Chaudhary VK, Adhya S, Pastan I. Activity of immunotoxins constructed with modified Pseudomonas exotoxin A lacking the cell recognition domain. J Biol Chem 1988;263:9470-5. [PUBMED] |
17. |
Pastan I. Immunotoxins containing Pseudomonas exotoxin A: A short history. Cancer Immunol Immunother 2003;52:338-41. [PUBMED] |
18. | |
19. | |
20. | |
21. | |
22. | |
23. |
Oku T, Tjuvajev JG, Miyagawa T, Sasajima T, Joshi A, Joshi R, et al. Tumor growth modulation by sense and antisense vascular endothelial growth factor gene expression: Effects on angiogenesis, vascular permeability, blood volume, blood flow, fluorodeoxyglucose uptake, and proliferation of human melanoma intracerebral xenografts. Cancer Res 1998;58:4185-92. |
24. | |
25. | |
26. | |
27. | |
28. | |
29. | |
30. | |
31. | |
32. | |
33. | |
34. | |
35. | |
36. | |
37. | |
38. | |
39. | |
40. | |
41. |