Document Type : Original Article
Authors
1 Department of Interventional Cardiology, Isfahan University of Medical Sciences, Isfahan, Iran
2 Hypertension Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
Abstract
Background: Coronary artery disease (CAD) is multifactorial disease, in which thrombotic occlusion and calcification occur usually. New strategies have been made for diagnosis and treatment of CAD, such as transradial catheterization. Hemostasis could be done in two approaches: traditional and patent. Our aim is to find the best approach with lowest complication. Materials and Methods: In a comparative study, 120 patients were recruited and divided randomly into two subgroups, including traditional group (60 patients; 24 females, 36 males; mean age: 64.35 ± 10.56 years) and patent group (60 patients; 28 females, 32 males; mean age: 60.15 ± 8.92 years). All demographic data including age, gender, body mass index, and CAD-related risk factors (smoking, diabetes, hypertension) and technical data including the number of catheters, procedure duration, and hemostatic compression time and clinical outcomes (radial artery occlusion [RAO], hematoma, bleeding) were collected. Data were analyzed by SPSS version 16. Results: Our findings revealed that the incidence of RAO was significantly lower in patent groups compared with traditional group (P = 0.041). Furthermore, the difference incidence of RAO was higher in early occlusion compare with late one (P = 0.041). Moreover, there were significant relationship between some factors in patients of traditional group with occlusion (gender [P = 0.038], age [P = 0.031], diabetes mellitus [P = 0.043], hemostatic compression time [P = 0.036]) as well as in patent group (age [P = 0.009], hypertension [P = 0.035]). Conclusion: Our findings showed that RAO, especially type early is significantly lower in patent method compared classic method; and patent hemostasis is the safest method and good alternative for classical method.
Keywords
1. |
Nabel EG, Braunwald E. A tale of coronary artery disease and myocardial infarction. N Engl J Med 2012;366:54-63. [PUBMED] |
2. | |
3. | |
4. | |
5. | |
6. | |
7. | |
8. | |
9. |
Serruys PW, Degertekin M, Tanabe K, Abizaid A, Sousa JE, Colombo A, et al. Intravascular ultrasound findings in the multicenter, randomized, double-blind RAVEL (RAndomized study with the sirolimus-eluting VElocity balloon-expandable stent in the treatment of patients with de novo native coronary artery Lesions) trial. Circulation 2002;106:798-803. [PUBMED] |
10. |
Ross R. The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 1993;362:801-9. [PUBMED] |
11. |
Kiemeneij F, Laarman GJ. Percutaneous transradial artery approach for coronary stent implantation. Cathet Cardiovasc Diagn 1993;30:173-8. [PUBMED] |
12. |
Saito S, Miyake S, Hosokawa G, Tanaka S, Kawamitsu K, Kaneda H, et al. Transradial coronary intervention in Japanese patients. Catheter Cardiovasc Interv 1999;46:37-41. [PUBMED] |
13. |
Saito S. Transradial approach-from the evangelist's view. Catheter Cardiovasc Interv 2001;53:269-70. [PUBMED] |
14. |
Kiemeneij F, Laarman GJ, Odekerken D, Slagboom T, van der Wieken R. A randomized comparison of percutaneous transluminal coronary angioplasty by the radial, brachial and femoral approaches: The access study. J Am Coll Cardiol 1997;29:1269-75. [PUBMED] |
15. |
Kim MH, Cha KS, Kim HJ, Kim SG, Kim JS. Primary stenting for acute myocardial infarction via the transradial approach: A safe and useful alternative to the transfemoral approach. J Invasive Cardiol 2000;12:292-6. [PUBMED] |
16. |
Pancholy S, Coppola J, Patel T, Roke-Thomas M. Prevention of radial artery occlusion-patent hemostasis evaluation trial (PROPHET study): A randomized comparison of traditional versus patency documented hemostasis after transradial catheterization. Catheter Cardiovasc Interv 2008;72:335-40. [PUBMED] |
17. | |
18. |
Mann T, Cubeddu G, Bowen J, Schneider JE, Arrowood M, Newman WN, et al. Stenting in acute coronary syndromes: A comparison of radial versus femoral access sites. J Am Coll Cardiol 1998;32:572-6. [PUBMED] |
19. | |
20. | |
21. |
Louvard Y, Benamer H, Garot P, Hildick-Smith D, Loubeyre C, Rigattieri S, et al. Comparison of transradial and transfemoral approaches for coronary angiography and angioplasty in octogenarians (the OCTOPLUS study). Am J Cardiol 2004;94:1177-80. [PUBMED] |
22. |
Agostoni P, Biondi-Zoccai GG, de Benedictis ML, Rigattieri S, Turri M, Anselmi M, et al. Radial versus femoral approach for percutaneous coronary diagnostic and interventional procedures; systematic overview and meta-analysis of randomized trials. J Am Coll Cardiol 2004;44:349-56. [PUBMED] |
23. |
Nagai S, Abe S, Sato T, Hozawa K, Yuki K, Hanashima K, et al. Ultrasonic assessment of vascular complications in coronary angiography and angioplasty after transradial approach. Am J Cardiol 1999;83:180-6. [PUBMED] |
24. |
Sanmartin M, Gomez M, Rumoroso JR, Sadaba M, Martinez M, Baz JA, et al. Interruption of blood flow during compression and radial artery occlusion after transradial catheterization. Catheter Cardiovasc Interv 2007;70:185-9. [PUBMED] |
25. |
Pancholy SB. Transradial access in an occluded radial artery: New technique. J Invasive Cardiol 2007;19:541-4. [PUBMED] |