In silico Design, and In vitro Expression of a Fusion Protein Encoding Brucella abortus L7/L12 and SOmp2b Antigens

Document Type : Original Article

Authors

1 Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran

2 Department of Biotechemistry, Qazvin University of Medical Sciences, Qazvin, Iran

Abstract

Background: L7/L12 is a protective antigen conserved in main Brucella pathogens and is considered as potential vaccine candidate. Outer membrane protein 2b is an immunogen conserved in all Brucella pathogens. Materials and Methods: The purpose of the current study was to in silico design a L7/L12-SOmp2b fusion protein and in vitro production of the chimera. Two possible fusion forms, L7/L12-SOmp2b and SOmp2b-L7/L12, were subjected to in silico modeling and analysis. Cloning and expression of the fusion protein has been done in the pET28a vector and Escherichia coli Bl21 (DE3), respectively. Results: Analysis and validation of the fusion proteins three-dimensional models showed that both models are in the range of native proteins. However, L7/L12-SOmp2b structure was more valid than the SOmp2b-L7/L12 model and subjected to in vitro production. The major histocompatibility complex II (MHC-II) epitope mapping using Immune Epitope DataBase indicated that the model contained good MHC-II binders. The L7/L12-Omp2b coding sequence was cloned in pET28a vector. The fusion was successfully expressed in E. coli BL21 by induction with isopropyl-β-d-thiogalactopyranoside. The rL7/L12-SOmp2b was purified with Ni-NTA column. The yield of the purified rL7/L12-SOmp2b was estimated by Bradford method to be 240 μg/ml of the culture. Western blot analysis revealed a specific reactivity with purified rL7/L12-SOmp2b produced in E. coli cells and showed the expression in the prokaryotic system. Conclusions: Our data indicates that L7/L12-SOmp2b fusion protein has a potential to induce both B- and T-cell-mediated immune responses and it can be evaluated as a new subunit vaccine candidate against brucellosis.

Keywords

1.
Franco MP, Mulder M, Gilman RH, Smits HL. Human brucellosis. Lancet Infect Dis 2007;7:775-86.  Back to cited text no. 1
[PUBMED]    
2.
He Y. Analyses of Brucella pathogenesis, host immunity, and vaccine targets using systems biology and bioinformatics. Front Cell Infect Microbiol 2012;2:2.  Back to cited text no. 2
[PUBMED]    
3.
Seleem MN, Boyle SM, Sriranganathan N. Brucellosis: A re-emerging zoonosis. Vet Microbiol 2010;140:392-8.  Back to cited text no. 3
[PUBMED]    
4.
Oliveira SC, Macedo GC, Almeida LA, Oliveira FS, Oñate A, Cassataro J, et al. Recent advances in understanding immunity against brucellosis: Application for vaccine development. Open Vet Sci J 2010;4:102-8.  Back to cited text no. 4
    
5.
Corbel MJ. Brucellosis in Humans and Animals. Geneva, Switzerland: WHO Press, World Health Organization; 2006.  Back to cited text no. 5
    
6.
Cassataro J, Estein SM, Pasquevich KA, Velikovsky CA, de la Barrera S, Bowden R, et al. Vaccination with the recombinant Brucella outer membrane protein 31 or a derived 27-amino-acid synthetic peptide elicits a CD4+ T helper 1 response that protects against Brucella melitensis infection. Infect Immun 2005;73:8079-88.  Back to cited text no. 6
[PUBMED]    
7.
Perkins SD, Smither SJ, Atkins HS. Towards a Brucella vaccine for humans. FEMS Microbiol Rev 2010;34:379-94.  Back to cited text no. 7
[PUBMED]    
8.
He Y, Xiang Z. Bioinformatics analysis of Brucella vaccines and vaccine targets using VIOLIN. Immunome Res 2010;6 Suppl 1:S5.  Back to cited text no. 8
[PUBMED]    
9.
Xavier MN, Paixão1 TA, Hartigh AB, Tsolis RM, Santos RL. Pathogenesis of Brucella spp. Open Vet Sci J 2010;4:109-18.  Back to cited text no. 9
    
10.
Jain S, Kumar S, Dohre S, Afley P, Sengupta N, Alam SI. Identification of a protective protein from stationary-phase exoproteome of Brucella abortus. Pathog Dis 2014;70:75-83.  Back to cited text no. 10
[PUBMED]    
11.
Yang Y, Yin J, Guo D, Lang X, Wang X. Immunization of mice with recombinant S-adenosyl-L-homocysteine hydrolase protein confers protection against Brucella melitensis infection. FEMS Immunol Med Microbiol 2011;61:159-67.  Back to cited text no. 11
[PUBMED]    
12.
Skendros P, Boura P. Immunity to brucellosis. Rev Sci Tech 2013;32:137-47.  Back to cited text no. 12
[PUBMED]    
13.
Vitry MA, De Trez C, Goriely S, Dumoutier L, Akira S, Ryffel B, et al. Crucial role of gamma interferon-producing CD4+ Th1 cells but dispensable function of CD8+ T cell, B cell, Th2, and Th17 responses in the control of Brucella melitensis infection in mice. Infect Immun 2012;80:4271-80.  Back to cited text no. 13
[PUBMED]    
14.
Yang Y, Wang L, Yin J, Wang X, Cheng S, Lang X, et al. Immunoproteomic analysis of Brucella melitensis and identification of a new immunogenic candidate protein for the development of brucellosis subunit vaccine. Mol Immunol 2011;49:175-84.  Back to cited text no. 14
[PUBMED]    
15.
Luo D, Ni B, Li P, Shi W, Zhang S, Han Y, et al. Protective immunity elicited by a divalent DNA vaccine encoding both the L7/L12 and Omp16 genes of Brucella abortus in BALB/c mice. Infect Immun 2006;74:2734-41.  Back to cited text no. 15
[PUBMED]    
16.
Mantur BG, Amarnath SK, Shinde RS. Review of clinical and laboratory features of human brucellosis. Indian J Med Microbiol 2007;25:188-202.  Back to cited text no. 16
[PUBMED]  [Full text]  
17.
Bachrach G, Banai M, Fishman Y, Bercovier H. Delayed-type hypersensitivity activity of the Brucella L7/L12 ribosomal protein depends on posttranslational modification. Infect Immun 1997;65:267-71.  Back to cited text no. 17
[PUBMED]    
18.
Kazak E, Oliveira SC, Goral G, Akalin H, Yilmaz E, Heper Y, et al.Brucella abortus L7/L12 recombinant protein induces strong Th1 response in acute brucellosis patients. Iran J Immunol 2010;7:132-41.  Back to cited text no. 18
[PUBMED]    
19.
Golshani M, Rafati S, Dashti A, Gholami E, Siadat SD, Oloomi M, et al. Vaccination with recombinant L7/L12-truncated Omp31 protein induces protection against Brucella infection in BALB/c mice. Mol Immunol 2015;65:287-92.  Back to cited text no. 19
[PUBMED]    
20.
Bachrach G, Banai M, Bardenstein S, Hoida G, Genizi A, Bercovier H. Brucella ribosomal protein L7/L12 is a major component in the antigenicity of brucellin INRA for delayed-type hypersensitivity in Brucella-sensitized guinea pigs. Infect Immun 1994;62:5361-6.  Back to cited text no. 20
[PUBMED]    
21.
Golshani M, Vaeznia N, Sahmani M, Bouzari S. In silico analysis of Brucella abortus Omp2b and in vitro expression of SOmp2b. Clin Exp Vaccine Res 2016;5:75-82.  Back to cited text no. 21
[PUBMED]    
22.
Golshani M, Rafati S, Nejati-Moheimani M, Pourabdi S, Arsang A, Bouzari S. Protein/Protein, DNA/DNA and DNA/Protein based vaccination strategies using truncated Omp2b against Brucella infection in BALB/c Mice. Int J Med Microbiol 2017. pii: S1438-422130020-6.  Back to cited text no. 22
    
23.
Golshani M, Rafati S, Nejati-Moheimani M, Ghasemian M, Bouzari S. Comparison of potential protection conferred by three immunization strategies (protein/protein, DNA/DNA, and DNA/protein) against Brucella infection using Omp2b in BALB/c Mice. Vet Microbiol 2016;197:47-52.  Back to cited text no. 23
[PUBMED]    
24.
Luo DY, Li P, Xing L, Zhao GY, Shi W, Zhang SL, et al. DNA vaccine encoding L7/L12-P39 of Brucella abortus induces protective immunity in BALB/c mice. Chin Med J (Engl) 2006;119:331-4.  Back to cited text no. 24
[PUBMED]    
25.
Díaz AG, Clausse M, Paolicchi FA, Fiorentino MA, Ghersi G, Zylberman V, et al. Immune response and serum bactericidal activity against Brucella ovis elicited using a short immunization schedule with the polymeric antigen BLSOmp31 in rams. Vet Immunol Immunopathol 2013;154:36-41.  Back to cited text no. 25
    
26.
Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 2008;9:40.  Back to cited text no. 26
[PUBMED]    
27.
Wiederstein M, Sippl MJ. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 2007;35:W407-10.  Back to cited text no. 27
[PUBMED]    
28.
Lovell SC, Davis IW, Arendall WB 3rd, de Bakker PI, Word JM, Prisant MG, et al. Structure validation by Calpha geometry: Phi, psi and Cbeta deviation. Proteins 2003;50:437-50.  Back to cited text no. 28
[PUBMED]    
29.
Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, et al. Protein identification and analysis tools on the ExPASy server. In: Walker JM, editor. The Proteomics Protocols Handbook. Totowa, NJ: Humana Press Inc.; 2005. p. 571-607.  Back to cited text no. 29
    
30.
Sen TZ, Jernigan RL, Garnier J, Kloczkowski A. GOR V server for protein secondary structure prediction. Bioinformatics 2005;21:2787-8.  Back to cited text no. 30
[PUBMED]    
31.
Wang P, Sidney J, Kim Y, Sette A, Lund O, Nielsen M, et al. Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinformatics 2010;11:568.  Back to cited text no. 31
[PUBMED]    
32.
El-Manzalawy Y, Dobbs D, Honavar V. Predicting linear B-cell epitopes using string kernels. J Mol Recognit 2008;21:243-55.  Back to cited text no. 32
[PUBMED]    
33.
Ponomarenko J, Bui HH, Li W, Fusseder N, Bourne PE, Sette A, et al. ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics 2008;9:514.  Back to cited text no. 33
[PUBMED]    
34.
Saha S, Raghava GP. AlgPred: Prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res 2006;34:W202-9.  Back to cited text no. 34
[PUBMED]    
35.
Golshani M, Rafati S, Jahanian-Najafabadi A, Nejati-Moheimani M, Siadat SD, Shahcheraghi F, et al.In silico design, cloning and high level expression of L7/L12-TOmp31 fusion protein of Brucella antigens. Res Pharm Sci 2015;10:436-45.  Back to cited text no. 35
[PUBMED]    
36.
Zhao Z, Li M, Luo D, Xing L, Wu S, Duan Y, et al. Protection of mice from Brucella infection by immunization with attenuated Salmonella enterica serovar typhimurium expressing a L7/L12 and BLS fusion antigen of Brucella. Vaccine 2009;27:5214-9.  Back to cited text no. 36
[PUBMED]    
37.
Yang X, Skyberg JA, Cao L, Clapp B, Thornburg T, Pascual DW. Progress in Brucella vaccine development. Front Biol (Beijing) 2013;8:60-77.  Back to cited text no. 37
[PUBMED]    
38.
Avila-Calderón ED, Lopez-Merino A, Sriranganathan N, Boyle SM, Contreras-Rodríguez A. A history of the development of Brucella vaccines. Biomed Res Int 2013;2013:743509.  Back to cited text no. 38
    
39.
Zarrini G, Zargham S, Tabatabaei Yazdi M, Behzadiyan Nejad Q, Muhammad Hassan Z. Cloning and overexpression of rplL gene of Brucella abortus in Escherichia coli. Pak J Biol Sci 2006;9:1128-31.  Back to cited text no. 39
    
40.
Oliveira SC, Splitter GA. Immunization of mice with recombinant L7/L12 ribosomal protein confers protection against Brucella abortus infection. Vaccine 1996;14:959-62.  Back to cited text no. 40
[PUBMED]    
41.
Kurar E, Splitter GA. Nucleic acid vaccination of Brucella abortus ribosomal L7/L12 gene elicits immune response. Vaccine 1997;15:1851-7.  Back to cited text no. 41
[PUBMED]    
42.
Titball RW. Vaccines against intracellular bacterial pathogens. Drug Discov Today 2008;13:596-600.  Back to cited text no. 42
[PUBMED]    
43.
Novagen user protocol TB055 Rev. C 0611JN, pET system manual 11th Edition. 2011 EMD Chemicals Inc., an affiliate of Merck KGaA, Darmstadt, Germany.p: 4.  Back to cited text no. 43