Cisplatin Alters Sodium Excretion and Renal Clearance in Rats: Gender and Drug Dose Related

Authors

1 Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran

2 Water and Electrolytes Research Center, Isfahan University of Medical Sciences; Department of Physiology, Isfahan University of Medical Sciences; IsfahanMN Institute of Basic and Applied Sciences Research, Isfahan, Iran

Abstract

Background: Nephrotoxicity is one of the side effects of cisplatin (CP) therapy which is gender related. CP disturbs renal function through glomerular filtration rate and electrolytes transport disturbances. This study was designed to compare some markers related to renal function in two protocols of CP treatment in rats. Materials and Methods: Male and female rats were subjected to receive single (treat 1; 7.5 mg/kg) and continues doses (treat 2; 3 mg/kg/day for 5 days) of CP, and the measurements were compared with control animals. Results: The serum level of blood urea nitrogen (BUN) and creatinine (Cr), and Cr-clearance, kidney tissue damage score, kidney weight, body weight change, and Na excretion was altered significantly (P < 0.05) in animals treated with continuous dose of CP (treat 2), while alteration of BUN and Cr was gender related. The kidney levels of malondialdehyde and nitrite were significantly different between male and female in two protocols of treatments. Conclusion: Renal function after CP therapy alters in rats' gender dependently, and it is related to protocol of treatment.

Keywords

1.
Yao X, Panichpisal K, Kurtzman N, Nugent K. Cisplatin nephrotoxicity: A review. Am J Med Sci 2007;334:115-24.  Back to cited text no. 1
[PUBMED]    
2.
Thomson D. Cisplatin-based therapy: A neurological and neuropsychological review. Psychooncology 2000;9:29-39.  Back to cited text no. 2
[PUBMED]    
3.
Hu J, Lieb JD, Sancar A, Adar S. Cisplatin DNA damage and repair maps of the human genome at single-nucleotide resolution. Proc Natl Acad Sci U S A 2016;113:11507-12.  Back to cited text no. 3
    
4.
Florea AM, Büsselberg D. Cisplatin as an anti-tumor drug: Cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel) 2011;3:1351-71.  Back to cited text no. 4
    
5.
Wong E, Giandomenico CM. Current status of platinum-based antitumor drugs. Chem Rev 1999;99:2451-66.  Back to cited text no. 5
    
6.
Esteban-Fernández D, Verdaguer JM, Ramírez-Camacho R, Palacios MA, Gómez-Gómez MM. Accumulation, fractionation, and analysis of platinum in toxicologically affected tissues after cisplatin, oxaliplatin, and carboplatin administration. J Anal Toxicol 2008;32:140-6.  Back to cited text no. 6
    
7.
Ravi R, Somani SM, Rybak LP. Mechanism of cisplatin ototoxicity: Antioxidant system. Basic Clin Pharm Toxicol 1995;76:386-94.  Back to cited text no. 7
    
8.
Rjiba-Touati K, Boussema IA, Belarbia A, Achour A, Bacha H. Protective effect of recombinant human erythropoietin against cisplatin-induced oxidative stress and nephrotoxicity in rat kidney. Int J Toxicol 2011;30:510-7.  Back to cited text no. 8
    
9.
Ateşşahín A, Ceríbaşi AO, Yuce A, Bulmus O, Cikim G. Role of ellagic acid against cisplatin-induced nephrotoxicity and oxidative stress in rats. Basic Clin Pharmacol Toxicol 2007;100:121-6.  Back to cited text no. 9
    
10.
Inagi R. Endoplasmic reticulum stress in the kidney as a novel mediator of kidney injury. Nephron Exp Nephrol 2009;112:e1-9.  Back to cited text no. 10
    
11.
Burits M, Bucar F. Antioxidant activity of nigella sativa essential oil. Phytother Res 2000;14:323-8.  Back to cited text no. 11
    
12.
Türk G, Ateşşahin A, Sönmez M, Ceribaşi AO, Yüce A. Improvement of cisplatin-induced injuries to sperm quality, the oxidant-antioxidant system, and the histologic structure of the rat testis by ellagic acid. Fertil Steril 2008;89:1474-81.  Back to cited text no. 12
    
13.
Eshraghi-Jazi F, Nematbakhsh M, Pezeshki Z, Nasri H, Talebi A, Safari T, et al. Sex differences in protective effect of recombinant human erythropoietin against cisplatin-induced nephrotoxicity in rats. Iran J Kidney Dis 2013;7:383-9.  Back to cited text no. 13
    
14.
Nematbakhsh M, Ebrahimian S, Tooyserkani M, Eshraghi-Jazi F, Talebi A, Ashrafi F, et al. Gender difference in cisplatin-induced nephrotoxicity in a rat model: Greater intensity of damage in male than female. Nephrourol Mon 2013;5:818-21.  Back to cited text no. 14
    
15.
Wongtawatchai T, Agthong S, Kaewsema A, Chentanez V. Sex-related differences in cisplatin-induced neuropathy in rats. J Med Assoc Thai 2009;92:1485-91.  Back to cited text no. 15
    
16.
Wei Q, Wang MH, Dong Z. Differential gender differences in ischemic and nephrotoxic acute renal failure. Am J Nephrol 2005;25:491-9.  Back to cited text no. 16
    
17.
Pezeshki Z, Nematbakhsh M, Nasri H, Talebi A, Pilehvarian AA, Safari T, et al. Evidence against protective role of sex hormone estrogen in cisplatin-induced nephrotoxicity in ovarectomized rat model. Toxicol Int 2013;20:43-7.  Back to cited text no. 17
[PUBMED]  [Full text]  
18.
Haghighi M, Nematbakhsh M, Talebi A, Nasri H, Ashrafi F, Roshanaei K, et al. The role of angiotensin II receptor 1 (AT1) blockade in cisplatin-induced nephrotoxicity in rats: Gender-related differences. Ren Fail 2012;34:1046-51.  Back to cited text no. 18
    
19.
Mansoori A, Oryan S, Nematbakhsh M. Role of mas receptor antagonist (A779) on pressure diuresis and natriuresis and renal blood flow in the absence of angiotensin II receptors type 1 and 2 in female and male rats. J Physiol Pharmacol 2014;65:633-9.  Back to cited text no. 19
    
20.
Arany I, Sa firstein RL. Cisplatin nephrotoxicity. Semin Nephrol 2003;23:460-4.  Back to cited text no. 20
    
21.
Eshraghi-Jazi F, Nematbakhsh M, Nasri H, Talebi A, Haghighi M, Pezeshki Z, et al. The protective role of endogenous nitric oxide donor (L-arginine) in cisplatin-induced nephrotoxicity: Gender related differences in rat model. J Res Med Sci 2011;16:1389-96.  Back to cited text no. 21
    
22.
Jilanchi S, Nematbakhsh M, Bahadorani M, Talebi A, Eshraghi-Jazi F, Mansouri A, et al. Vitamin e is a nephroprotectant agent in male but not in female in a model of cisplatin-induced nephrotoxicity. ISRN Nephrol 2013;2013:280395.  Back to cited text no. 22
    
23.
Nematbakhsh M, Pezeshki Z. Sex-related difference in nitric oxide metabolites levels after nephroprotectant supplementation administration against cisplatin-induced nephrotoxicity in wistar rat model: The role of vitamin E, erythropoietin, or N-acetylcysteine. ISRN Nephrol 2013;2013:612675.  Back to cited text no. 23
    
24.
Stakisaitis D, Dudeniene G, Jankūnas RJ, Grazeliene G, Didziapetriene J, Pundziene B, et al. Cisplatin increases urinary sodium excretion in rats: Gender-related differences. Medicina (Kaunas) 2010;46:45-50.  Back to cited text no. 24
    
25.
Bradner WT, Schurig JE. Toxicology screening in small animals. Cancer Treat Rev 1981;8:93-102.  Back to cited text no. 25
    
26.
Wang Y, Aggarwal SK. Effects of cisplatin and taxol on inducible nitric oxide synthase, gastrin and somatostatin in gastrointestinal toxicity. Anticancer Drugs 1997;8:853-8.  Back to cited text no. 26
    
27.
Pratibha Ravindra DA, Kulkarni SS, Padmanabh V, Rataboli Chitra Y, Dhume KU. Cisplatin induced histological changes in renal tissue of rat. J Cell Anim Biol 2010;4:108-11.  Back to cited text no. 27