Document Type : Original Article
Authors
1 Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
2 Department of Biotechnology, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
Abstract
Background: Poly(methyl vinyl ether-maleic acid) (PMVEMA) is a water-soluble, biodegradable polymer used for drug delivery. The aim of the present study was to prepare nanofibers of this polymer as a fast-dissolving carrier for montelukast. Materials and Methods: Polymeric nanofibers were spun by electrospinning method using different ratios of biodegradable polymer of PMVEMA. The processing variables including voltage, distance of the needle to rotating screen, and flow rate of the solution were optimized based on the diameter of the nanofibers, drug content, and release efficiency by a Taguchi design. The morphology, diameter, and diameter distribution of the nanofibers were studied by scanning electron microscopy (SEM). Drug loading and its release rate from the nanofibers were analyzed spectrophotometrically. The possible molecular between the polymer and the drug was characterized with Fourier-transform-infrared spectroscopy. Results: The results showed the best situation for electrospinning of the polymer obtained at the polymer concentration of 37%, the distance of the needle to rotating screen of 19 cm, the voltage of 120 kV, and the rate of injection of 0.2 ml/h. In these situations, the fiber diameter and drug loading efficiency percentage were 273 nm and 83%, respectively. These nanofibers released the total loaded drug within 1–3 s with no residue in the dissolution medium. SEM results showed that the optimized nanofibers were quite smooth and without beads. Conclusions: The results indicated that the nanofibers of PMVEMA could dissolve the drug very rapidly and can be adopted for fast-dissolving dosage forms.
Keywords
1. | |
2. | |
3. |
Wang Y, Chang F, Zhang Y, Liu N, Liu G, Gupta S, et al. Pretargeting with amplification using polymeric peptide nucleic acid. Bioconjug Chem 2001;12:807-16. [PUBMED] |
4. |
Varshosaz J, Minaiyan M, Forghanian M. Prolonged hypocalcemic effect by pulmonary delivery of calcitonin loaded poly(methyl vinyl ether maleic acid) bioadhesive nanoparticles. Biomed Res Int 2014;2014:932615. [PUBMED] |
5. | |
6. | |
7. |
Kim SB, Lee JH, Lee J, Shin SH, Eun HS, Lee SM, et al. The efficacy and safety of montelukast sodium in the prevention of bronchopulmonary dysplasia. Korean J Pediatr 2015;58:347-53. [PUBMED] |
8. | |
9. | |
10. |
Jannesari M, Varshosaz J, Morshed M, Zamani M. Composite poly(vinyl alcohol)/poly(vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs. Int J Nanomedicine 2011;6:993-1003. [PUBMED] |
11. |
Li X, Kanjwal MA, Lin L, Chronakis IS. Electrospun polyvinyl-alcohol nanofibers as oral fast-dissolving delivery system of caffeine and riboflavin. Colloids Surf B Biointerfaces 2013;103:182-8. [PUBMED] |
12. |
Illangakoon UE, Gill H, Shearman GC, Parhizkar M, Mahalingam S, Chatterton NP, et al. Fast dissolving paracetamol/caffeine nanofibers prepared by electrospinning. Int J Pharm 2014;477:369-79. [PUBMED] |
13. | |
14. |
Sill TJ, von Recum HA. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 2008;29:1989-2006. [PUBMED] |
15. |
Zamani M, Morshed M, Varshosaz J, Jannesari M. Controlled release of metronidazole benzoate from poly epsilon-caprolactone electrospun nanofibers for periodontal diseases. Eur J Pharm Biopharm 2010;75:179-85. [PUBMED] |
16. |
Luu YK, Kim K, Hsiao BS, Chu B, Hadjiargyrou M. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J Control Release 2003;89:341-53. [PUBMED] |
17. |
Lee JY, Bashur CA, Goldstein AS, Schmidt CE. Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 2009;30:4325-35. [PUBMED] |
18. | |
19. | |
20. |
Meechaisue C, Dubin R, Supaphol P, Hoven VP, Kohn J. Electrospun mat of tyrosine-derived polycarbonate fibers for potential use as tissue scaffolding material. J Biomater Sci Polym Ed 2006;17:1039-56. [PUBMED] |
21. | |
22. | |
23. | |
24. | |
25. | |
26. | |
27. |