Document Type : Original Article
Authors
1 Department of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
2 Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
3 Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
Abstract
Background: The type 2 diabetes is one of the most common autoimmune diseases. Due to a key role in the metabolism of unsaturated fatty acids such as arachidonic acid, one of the most important precursors of immunity mediators, fatty acid desaturase (FADS) genes could have an important impact in the development of type 2 diabetes. Materials and Methods: This study aimed to determine the relationship between polymorphisms rs174537 in FADS1 gene and rs174575 in FADS2 gene with type 2 diabetes in Iranian population. After extracting genomic DNA, the locations of mutations and allele types were identified with high-resolution melting (HRM)-polymerase chain reaction method. Then, association between these mutations with metabolic syndrome, dyslipidemia, and type 2 diabetes was investigated using χ2 correlation coefficients for variables and logistic regression. Results: The results showed that among 50 diabetic participants, 68% of patients have the mutant allele for rs174537 in FADS1 gene. This rate is 26% for rs174575 in FADS2 gene. Based on the results, it seems that participants having rs174537 mutant allele are more prone to become diabetic but it has a beneficial effect on total and low-density lipoprotein cholesterol and participants having rs174575 mutant are less prone to become diabetic, and also, it leads to higher triglycerides and body mass index (obesity). Conclusions: Detecting FADS1 and FADS2, gene polymorphisms using HRM can be an anticipating tool for making decision on initiating lifestyle modifications to prevent type 2 diabetes.
Keywords
1. | |
2. | |
3. |
Albert MA, Glynn RJ, Buring J, Ridker PM. C-reactive protein levels among women of various ethnic groups living in the United States (from the women's health study). Am J Cardiol 2004;93:1238-42. [PUBMED] |
4. |
Sergeant S, Hugenschmidt CE, Rudock ME, Ziegler JT, Ivester P, Ainsworth HC, et al. Differences in arachidonic acid levels and fatty acid desaturase (FADS) gene variants in African Americans and European Americans with diabetes or the metabolic syndrome. Br J Nutr 2012;107:547-55. [PUBMED] |
5. | |
6. |
Huang T, Bhulaidok S, Cai Z, Xu T, Xu F, Wahlqvist ML, et al. Plasma phospholipids n-3 polyunsaturated fatty acid is associated with metabolic syndrome. Mol Nutr Food Res 2010;54:1628-35. [PUBMED] |
7. |
Huang T, Sun J, Chen Y, Xie H, Xu D, Huang J, et al. Genetic variants in desaturase gene, erythrocyte fatty acids, and risk for type 2 diabetes in Chinese Hans. Nutrition 2014;30:897-902. [PUBMED] |
8. | |
9. |
Lemaitre RN, King IB, Mozaffarian D, Sotoodehnia N, Rea TD, Kuller LH, et al. Plasma phospholipid trans fatty acids, fatal ischemic heart disease, and sudden cardiac death in older adults: The cardiovascular health study. Circulation 2006;114:209-15. [PUBMED] |
10. |
Shannon J, King IB, Moshofsky R, Lampe JW, Gao DL, Ray RM, et al. Erythrocyte fatty acids and breast cancer risk: A case-control study in Shanghai, China. Am J Clin Nutr 2007;85:1090-7. [PUBMED] |
11. | |
12. | |
13. |
Gillingham LG, Harding SV, Rideout TC, Yurkova N, Cunnane SC, Eck PK, et al. Dietary oils and FADS1-FADS2 genetic variants modulate [13C]α-linolenic acid metabolism and plasma fatty acid composition. Am J Clin Nutr 2013;97:195-207. [PUBMED] |
14. |
Li SW, Lin K, Ma P, Zhang ZL, Zhou YD, Lu SY, et al. FADS gene polymorphisms confer the risk of coronary artery disease in a Chinese Han population through the altered desaturase activities: Based on high-resolution melting analysis. PLoS One 2013;8:e55869. [PUBMED] |
15. |
Standl M, Lattka E, Stach B, Koletzko S, Bauer CP, von Berg A, et al. FADS1 FADS2 gene cluster, PUFA intake and blood lipids in children: Results from the GINIplus and LISAplus studies. PLoS One 2012;7:e37780. [PUBMED] |
16. |
Nakamura MT, Nara TY. Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu Rev Nutr 2004;24:345-76. [PUBMED] |
17. |
Beblo S, Reinhardt H, Demmelmair H, Muntau AC, Koletzko B. Effect of fish oil supplementation on fatty acid status, coordination, and fine motor skills in children with phenylketonuria. J Pediatr 2007;150:479-84. [PUBMED] |
18. | |
19. | |
20. |
Muskiet FA, Kemperman RF. Folate and long-chain polyunsaturated fatty acids in psychiatric disease. J Nutr Biochem 2006;17:717-27. [PUBMED] |
21. |
Nakada T, Kwee IL, Ellis WG. Membrane fatty acid composition shows delta-6-desaturase abnormalities in Alzheimer's disease. Neuroreport 1990;1:153-5. [PUBMED] |
22. |
Das UN. Essential fatty acid metabolism in patients with essential hypertension, diabetes mellitus and coronary heart disease. Prostaglandins Leukot Essent Fatty Acids 1995;52:387-91. [PUBMED] |
23. |
van Doormaal JJ, Muskiet FA, van Ballegooie E, Sluiter WJ, Doorenbos H. The plasma and erythrocyte fatty acid composition of poorly controlled, insulin-dependent (type I) diabetic patients and the effect of improved metabolic control. Clin Chim Acta 1984;144:203-12. [PUBMED] |
24. |
Vessby B. Dietary fat, fatty acid composition in plasma and the metabolic syndrome. Curr Opin Lipidol 2003;14:15-9. [PUBMED] |
25. |
Glew RH, Okolie H, Huang YS, Chuang LT, Suberu O, Crossey M, et al. Abnormalities in the fatty-acid composition of the serum phospholipids of stroke patients. J Natl Med Assoc 2004;96:826-32. [PUBMED] |
26. |
Leaf A. Prevention of sudden cardiac death by n-3 polyunsaturated fatty acids. Fundam Clin Pharmacol 2006;20:525-38. [PUBMED] |
27. | |
28. | |
29. | |
30. |
Trak-Fellermeier MA, Brasche S, Winkler G, Koletzko B, Heinrich J. Food and fatty acid intake and atopic disease in adults. Eur Respir J 2004;23:575-82. [PUBMED] |
31. |
Lattka E, Illig T, Heinrich J, Koletzko B. Do FADS genotypes enhance our knowledge about fatty acid related phenotypes? Clin Nutr 2010;29:277-87. [PUBMED] |
32. |
Guillou H, Zadravec D, Martin PG, Jacobsson A. The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. Prog Lipid Res 2010;49:186-99. [PUBMED] |
33. |
Malerba G, Schaeffer L, Xumerle L, Klopp N, Trabetti E, Biscuola M, et al. SNPs of the FADS gene cluster are associated with polyunsaturated fatty acids in a cohort of patients with cardiovascular disease. Lipids 2008;43:289-99. [PUBMED] |
34. |
Martinelli N, Girelli D, Malerba G, Guarini P, Illig T, Trabetti E, et al. FADS genotypes and desaturase activity estimated by the ratio of arachidonic acid to linoleic acid are associated with inflammation and coronary artery disease. Am J Clin Nutr 2008;88:941-9. [PUBMED] |
35. |
Rzehak P, Heinrich J, Klopp N, Schaeffer L, Hoff S, Wolfram G, et al. Evidence for an association between genetic variants of the fatty acid desaturase 1 fatty acid desaturase 2 (FADS1 FADS2) gene cluster and the fatty acid composition of erythrocyte membranes. Br J Nutr 2009;101:20-6. [PUBMED] |
36. | |
37. |
Xie L, Innis SM. Genetic variants of the FADS1 FADS2 gene cluster are associated with altered (n-6) and (n-3) essential fatty acids in plasma and erythrocyte phospholipids in women during pregnancy and in breast milk during lactation. J Nutr 2008;138:2222-8. [PUBMED] |
38. | |
39. | |
40. |
Vessby B, Gustafsson IB, Tengblad S, Boberg M, Andersson A. Desaturation and elongation of fatty acids and insulin action. Ann N Y Acad Sci 2002;967:183-95. [PUBMED] |
41. |
Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 2010;42:105-16. [PUBMED] |
42. |
Florez JC, Jablonski KA, McAteer JB, Franks PW, Mason CC, Mather K, et al. Effects of genetic variants previously associated with fasting glucose and insulin in the diabetes prevention program. PLoS One 2012;7:e44424. [PUBMED] |
43. |
Ingelsson E, Langenberg C, Hivert MF, Prokopenko I, Lyssenko V, Dupuis J, et al. Detailed physiologic characterization reveals diverse mechanisms for novel genetic loci regulating glucose and insulin metabolism in humans. Diabetes 2010;59:1266-75. [PUBMED] |
44. | |
45. | |
46. |