Effect of Crocin, Exercise, and Crocin-accompanied Exercise on Learning and Memory in Rats under Chronic Unpredictable Stress

Document Type : Original Article

Authors

Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

Abstract

Background: Stress affects brain functions and induces psychological disorders. Previous studies have indicated different effects of crocin and exercise on the improvement of memory in some types of stress. The present study investigated the effect of crocin, exercise, and crocin-accompanied exercise on learning, memory, and memory consolidation in rats under chronic unpredictable stress (CUS). Materials and Methods: Male rats were randomly allocated to different groups: control, sham, stress, stress-exercise, stress-crocin, and stress-crocin-accompanied exercise groups. The CUS and treadmill running were applied 2 h/day and 1 h/day, respectively, for 21 days. Crocin (30 mg/kg) was daily intraperitoneally injected to the rats and their behavioral variables were evaluated as a brain function using the passive avoidance test. Results: Results showed that the CUS significantly decreased learning and memory compared to the control group, while crocin alone and crocin-accompanied exercise significantly improved learning and memory compared to the stressed group. It was found that exercise alone caused learning but did not improve memory in unpredictable stress rats. Conclusion: The data indicated that unpredictable stress had very destructive effects on the brain functions. Furthermore, unlike exercise, crocin improved memory under unpredictable stress conditions. Overall, it seems that the beneficial effects of crocin-accompanied exercise on learning and memory were probably because of crocin, but not exercise.

Keywords

1.
Radahmadi M, Alaei H, Sharifi MR, Hosseini N. Effects of different timing of stress on corticosterone, BDNF and memory in male rats. Physiol Behav 2015;139:459-67.  Back to cited text no. 1
    
2.
Radahmadi M, Dastgerdi HA, Fallah N, Alaei H. The effects of acute, sub-chronic and chronic psychical stress on the brain electrical activity in male rats. Physiol Pharmacol 2017;21:185-92.  Back to cited text no. 2
    
3.
Roozendaal B. Stress and memory: Opposing effects of glucocorticoids on memory consolidation and memory retrieval. Neurobiol Learn Mem 2002;78:578-95.  Back to cited text no. 3
    
4.
Campos AC, Fogaça MV, Aguiar DC, Guimarães FS. Animal models of anxiety disorders and stress. Rev Bras Psiquiatr 2013;35 Suppl 2:S101-11.  Back to cited text no. 4
    
5.
Ji JF, Ji SJ, Sun R, Li K, Zhang Y, Zhang LY, et al. Forced running exercise attenuates hippocampal neurogenesis impairment and the neurocognitive deficits induced by whole-brain irradiation via the BDNF-mediated pathway. Biochem Biophys Res Commun 2014;443:646-51.  Back to cited text no. 5
    
6.
Ghadrdoost B, Vafaei AA, Rashidy-Pour A, Hajisoltani R, Bandegi AR, Motamedi F, et al. Protective effects of saffron extract and its active constituent crocin against oxidative stress and spatial learning and memory deficits induced by chronic stress in rats. Eur J Pharmacol 2011;667:222-9.  Back to cited text no. 6
    
7.
Azadbakht AA, Radahmadi M, Javanmard SH, Reisi P. The effects of doxepin on stress-induced learning, memory impairments, and TNF-α level in the rat hippocampus. Res Pharm Sci 2015;10:460-5.  Back to cited text no. 7
    
8.
Ranjbar H, Radahmadi M, Alaei H, Reisi P, Karimi S. The effect of basolateral amygdala nucleus lesion on memory under acute, mid and chronic stress in male rats. Turk J Med Sci 2016;46:1915-25.  Back to cited text no. 8
    
9.
Li YH, Zhang CH, Wang SE, Qiu J, Hu SY, Xiao GL. Effects of Chaihu Shugan San on behavior and plasma levels of corticotropin releasing hormone and adrenocorticotropic hormone of rats with chronic mild unpredicted stress depression. Zhong Xi Yi Jie He Xue Bao 2009;7:1073-7.  Back to cited text no. 9
    
10.
Asl NA, Sheikhzade F, Torchi M, Roshangar L, Khamnei S. Long-term regular exercise promotes memory and learning in young but not in older rats. Pathophysiology 2008;15:9-12.  Back to cited text no. 10
    
11.
Radahmadi M, Alaei H, Sharifi MR, Hosseini N. Effect of forced exercise and exercise withdrawal on memory, serum and hippocampal corticosterone levels in rats. Exp Brain Res 2015;233:2789-99.  Back to cited text no. 11
    
12.
Radahmadi M, Hosseini N, Alaei H. Effect of exercise, exercise withdrawal, and continued regular exercise on excitability and long-term potentiation in the dentate gyrus of hippocampus. Brain Res 2016;1653:8-13.  Back to cited text no. 12
    
13.
Radahmadi M, Hosseini N, Alaei H, Sharifi MR. The effect of preventive, therapeutic and protective exercises on hippocampal memory mediators in stressed rats. Malays J Med Sci 2016;23:29-37.  Back to cited text no. 13
    
14.
Dastgerdi AH, Radahmadi M, Pourshanazari AA, Dastgerdi HH. Effects of crocin on learning and memory in rats under chronic restraint stress with special focus on the hippocampal and frontal cortex corticosterone levels. Adv Biomed Res 2017;6:157.  Back to cited text no. 14
[PUBMED]  [Full text]  
15.
Hosseini N, Alaei H, Reisi P, Radahmadi M. The effect of treadmill running on memory before and after the NBM-lesion in rats. J Bodyw Mov Ther 2013;17:423-9.  Back to cited text no. 15
    
16.
Radahmadi M, Hosseini N, Alaei H, Sharifi MR. Effects of stress on serum and hippocampal IL-1β and glucose levels as well as retention in rats. Indian J Physiol Pharmacol 2017;61:141-51.  Back to cited text no. 16
    
17.
Roozendaal B, McEwen BS, Chattarji S. Stress, memory and the amygdala. Nat Rev Neurosci 2009;10:423-33.  Back to cited text no. 17
    
18.
Eidelkhani N, Radahmadi M, Rafiee L, Gharzi M, Alaei H, Reisi P. Effects of doxepin on spatial memory, TNF-α and Bcl-2 family genes expression in rat hippocampus. Physiol Pharmacol 2015;19:185-92.  Back to cited text no. 18
    
19.
Ranjbar H, Radahmadi M, Alaei H, Reisi P. Effect of Different Durations of Stress on Spatial and Cognitive Memory in Male Rats. J Isfahan Med Sch 2014;32:1933-43.  Back to cited text no. 19
    
20.
Joëls M, Pu Z, Wiegert O, Oitzl MS, Krugers HJ. Learning under stress: How does it work? Trends Cogn Sci 2006;10:152-8.  Back to cited text no. 20
    
21.
Sandi C, Pinelo-Nava MT. Stress and memory: Behavioral effects and neurobiological mechanisms. Neural Plast 2007;2007:78970.  Back to cited text no. 21
    
22.
Smeets T, Otgaar H, Candel I, Wolf OT. True or false? Memory is differentially affected by stress-induced cortisol elevations and sympathetic activity at consolidation and retrieval. Psychoneuroendocrinology 2008;33:1378-86.  Back to cited text no. 22
    
23.
McGaugh JL, Roozendaal B. Role of adrenal stress hormones in forming lasting memories in the brain. Curr Opin Neurobiol 2002;12:205-10.  Back to cited text no. 23
    
24.
Pitsikas N, Sakellaridis N. Crocus sativus L. Extracts antagonize memory impairments in different behavioural tasks in the rat. Behav Brain Res 2006;173:112-5.  Back to cited text no. 24
    
25.
Khalili M, Roghani M, Ekhlasi M. The effect of aqueous Crocus sativus L. extract on intracerebroventricular streptozotocin-induced cognitive deficits in rat: A behavioral analysis. Iran J Pharm Res 2009;8:185-91.  Back to cited text no. 25
    
26.
Khalili M, Hamzeh F. Effects of active constituents of Crocus sativus L. crocin on streptozocin-induced model of sporadic Alzheimer's disease in male rats. Iran Biomed J 2010;14:59-65.  Back to cited text no. 26
    
27.
Radahmadi M, Alaei H, Sharifi MR, Hosseini N. Stress biomarker responses to different protocols of forced exercise in chronically stressed rats. J Bodyw Mov Ther 2017;21:63-8.  Back to cited text no. 27
    
28.
Alaei H, Borjeian L, Azizi M, Orian S, Pourshanazari A, Hanninen O. Treadmill running reverses retention deficit induced by morphine. Eur J Pharmacol 2006;536:138-41.  Back to cited text no. 28
    
29.
Kang JS. Exercise copes with prolonged stress-induced impairment of spatial memory performance by endoplasmic reticulum stress. J Exerc Nutrition Biochem 2015;19:191-7.  Back to cited text no. 29
    
30.
Cotman CW, Berchtold NC. Exercise: A behavioral intervention to enhance brain health and plasticity. Trends Neurosci 2002;25:295-301.  Back to cited text no. 30
    
31.
Rizi AA, Reisi P, Naghsh N. Effect of forced treadmill exercise and blocking of opioid receptors with naloxone on memory in male rats. Adv Biomed Res 2016;5:20.  Back to cited text no. 31
[PUBMED]  [Full text]  
32.
Radahmadi M, Alaei H, Sharifi MR, Hosseini N. The effect of synchronized forced running with chronic stress on short, mid and long- term memory in rats. Asian J Sports Med 2013;4:54-62.  Back to cited text no. 32
    
33.
Powers SK, Lennon SL. Analysis of cellular responses to free radicals: Focus on exercise and skeletal muscle. Proc Nutr Soc 1999;58:1025-33.  Back to cited text no. 33
    
34.
Liu J, Yeo HC, Overvik-Douki E, Hagen T, Doniger SJ, Chyu DW, et al. Chronically and acutely exercised rats: Biomarkers of oxidative stress and endogenous antioxidants. J Appl Physiol (1985) 2000;89:21-8.  Back to cited text no. 34
    
35.
Suzuki K, Totsuka M, Nakaji S, Yamada M, Kudoh S, Liu Q, et al. Endurance exercise causes interaction among stress hormones, cytokines, neutrophil dynamics, and muscle damage. J Appl Physiol (1985) 1999;87:1360-7.  Back to cited text no. 35
    
36.
Meeusen R, De Meirleir K. Exercise and brain neurotransmission. Sports Med 1995;20:160-88.  Back to cited text no. 36
    
37.
Ghorbanzadeh V, Mohammadi M, Dariushnejad H, Chodari L, Mohaddes G. Effects of crocin and voluntary exercise, alone or combined, on heart VEGF-A and HOMA-IR of HFD/STZ induced type 2 diabetic rats. J Endocrinol Invest 2016;39:1179-86.  Back to cited text no. 37
    
38.
Berchtold NC, Castello N, Cotman CW. Exercise and time-dependent benefits to learning and memory. Neuroscience 2010;167:588-97.  Back to cited text no. 38