Neuroprotective Effects of Forced Exercise and Bupropion on Chronic Methamphetamine-induced Cognitive Impairment via Modulation of cAMP Response Element-binding Protein/Brain-derived Neurotrophic Factor Signaling Pathway, Oxidative Stress, and Inflammatory Biomarkers in Rats

Document Type : Original Article

Authors

Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran

Abstract

Background: Forced exercise can act as non-pharmacologic neuroprotective agent. In current study, we tried the involved molecular mechanisms of protective effects of forced exercise against methamphetamine induced neurodegeneration. Materials and Methods: Forty adult male rats were divided to Group 1 and 2 which received normal saline and methamphetamine (10 mg/kg) respectively for 30 days. Groups 3, 4 and 5 were treated with methamphetamine for first 15 days and then were treated by forced exercise, bupropion (20 mg/kg/day) or combination of them for the following 15 days. Between 26th and 30th days, Morris Water Maze (MWM) was used to evaluate the cognition. On day 31, hippocampus was isolated from each rat and oxidative, antioxidant and inflammatory factors also the level of total and phosphorylated forms of cAMP response element-binding protein (CREB) and brain derived neurotrophic factor (BDNF) proteins were also evaluated. Results: Chronic abuse of methamphetamine could decreases cognition and increase malondialdehyde (MDA), Tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β), while caused decreases in superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR) activities all these changes was significant (P < 0.001) in compared to control group while treatment with bupropion, forced exercise and bupropion in combination with forced exercise could prevent all these malicious effects of methamphetamine (P < 0.001). Bupropion, forced exercise and bupropion in combination with forced exercise could activate CREB (both forms) and activates BDNF proteins' expression with P < 0.001 in methamphetamine treated rats. Conclusions: P-CREB/BDNF signaling pathways might have critical role in forced exercise protective effects against methamphetamine induced neurodegeneration.

Keywords

1.
Motaghinejad M, Motevalian M, Abdollahi M, Heidari M, Madjd Z. Topiramate confers neuroprotection against methylphenidate-induced neurodegeneration in dentate gyrus and CA1 regions of hippocampus via CREB/BDNF pathway in rats. Neurotox Res 2017;31:373-99.  Back to cited text no. 1
    
2.
Razavi S, Nazem G, Mardani M, Esfandiari E, Salehi H, Esfahani SH, et al. Neurotrophic factors and their effects in the treatment of multiple sclerosis. Adv Biomed Res 2015;4:53.  Back to cited text no. 2
    
3.
Motaghinejad M, Motevalian M, Fatima S, Beiranvand T, Mozaffari S. Topiramate via NMDA, AMPA/kainate, GABAA and alpha2 receptors and by modulation of CREB/BDNF and akt/GSK3 signaling pathway exerts neuroprotective effects against methylphenidate-induced neurotoxicity in rats. J Neural Transm (Vienna) 2017;124:1369-87.  Back to cited text no. 3
    
4.
Carlezon WA Jr., Duman RS, Nestler EJ. The many faces of CREB. Trends Neurosci 2005;28:436-45.  Back to cited text no. 4
    
5.
Beaulieu JM, Gainetdinov RR, Caron MG. The akt-GSK-3 signaling cascade in the actions of dopamine. Trends Pharmacol Sci 2007;28:166-72.  Back to cited text no. 5
    
6.
Duarte AI, Santos P, Oliveira CR, Santos MS, Rego AC. Insulin neuroprotection against oxidative stress is mediated by akt and GSK-3beta signaling pathways and changes in protein expression. Biochim Biophys Acta 2008;1783:994-1002.  Back to cited text no. 6
    
7.
Grimes CA, Jope RS. The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol 2001;65:391-426.  Back to cited text no. 7
    
8.
Bijur GN, De Sarno P, Jope RS. Glycogen synthase kinase-3beta facilitates staurosporine – And heat shock-induced apoptosis. Protection by lithium. J Biol Chem 2000;275:7583-90.  Back to cited text no. 8
    
9.
Li J, Nam KH. Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science 2002;295(5558):1299-301.  Back to cited text no. 9
    
10.
Foulstone EJ, Tavaré JM, Gunn-Moore FJ. Sustained phosphorylation and activation of protein kinase B correlates with brain-derived neurotrophic factor and insulin stimulated survival of cerebellar granule cells. Neurosci Lett 1999;264:125-8.  Back to cited text no. 10
    
11.
Chen G, Bower KA, Ma C, Fang S, Thiele CJ, Luo J, et al. Glycogen synthase kinase 3beta (GSK3beta) mediates 6-hydroxydopamine-induced neuronal death. FASEB J 2004;18:1162-4.  Back to cited text no. 11
    
12.
Thrash B, Karuppagounder SS, Uthayathas S, Suppiramaniam V, Dhanasekaran M. Neurotoxic effects of methamphetamine. Neurochem Res 2010;35:171-9.  Back to cited text no. 12
    
13.
Brecht ML, O'Brien A, von Mayrhauser C, Anglin MD. Methamphetamine use behaviors and gender differences. Addict Behav 2004;29:89-106.  Back to cited text no. 13
    
14.
Narita M, Aoki K, Takagi M, Yajima Y, Suzuki T. Implication of brain-derived neurotrophic factor in the release of dopamine and dopamine-related behaviors induced by methamphetamine. Neuroscience 2003;119:767-75.  Back to cited text no. 14
    
15.
Simon SL, Domier C, Carnell J, Brethen P, Rawson R, Ling W, et al. Cognitive impairment in individuals currently using methamphetamine. Am J Addict 2000;9:222-31.  Back to cited text no. 15
    
16.
Kalechstein AD, Newton TF, Green M. Methamphetamine dependence is associated with neurocognitive impairment in the initial phases of abstinence. J Neuropsychiatry Clin Neurosci 2003;15:215-20.  Back to cited text no. 16
    
17.
Krasnova IN, Justinova Z, Ladenheim B, Jayanthi S, McCoy MT, Barnes C, et al. Methamphetamine self-administration is associated with persistent biochemical alterations in striatal and cortical dopaminergic terminals in the rat. PLoS One 2010;5:e8790.  Back to cited text no. 17
    
18.
Volkow ND, Chang L, Wang GJ, Fowler JS, Leonido-Yee M, Franceschi D, et al. Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am J Psychiatry 2001;158:377-82.  Back to cited text no. 18
    
19.
Krasnova IN, Chiflikyan M, Justinova Z, McCoy MT, Ladenheim B, Jayanthi S, et al. CREB phosphorylation regulates striatal transcriptional responses in the self-administration model of methamphetamine addiction in the rat. Neurobiol Dis 2013;58:132-43.  Back to cited text no. 19
    
20.
Newton TF, Roache JD, De La Garza R 2nd, Fong T, Wallace CL, Li SH, et al. Bupropion reduces methamphetamine-induced subjective effects and cue-induced craving. Neuropsychopharmacology 2006;31:1537-44.  Back to cited text no. 20
    
21.
Reichel CM, Murray JE, Grant KM, Bevins RA. Bupropion attenuates methamphetamine self-administration in adult male rats. Drug Alcohol Depend 2009;100:54-62.  Back to cited text no. 21
    
22.
Thanos PK, Tucci A, Stamos J, Robison L, Wang GJ, Anderson BJ, et al. Chronic forced exercise during adolescence decreases cocaine conditioned place preference in Lewis rats. Behav Brain Res 2010;215:77-82.  Back to cited text no. 22
    
23.
Lynch WJ, Peterson AB, Sanchez V, Abel J, Smith MA. Exercise as a novel treatment for drug addiction: A neurobiological and stage-dependent hypothesis. Neurosci Biobehav Rev 2013;37:1622-44.  Back to cited text no. 23
    
24.
Motaghinejad M, Fatima S, Karimian M, Ganji S. Protective effects of forced exercise against nicotine-induced anxiety, depression and cognition impairment in rat. J Basic Clin Physiol Pharmacol 2016;27:19-27.  Back to cited text no. 24
    
25.
Motaghinejad M, Ghaleni MA, Motaghinejad O. Preventive effects of forced exercise against alcohol-induced physical dependency and reduction of pain perception threshold. Int J Prev Med 2014;5:1299-307.  Back to cited text no. 25
    
26.
Ji JF, Ji SJ, Sun R, Li K, Zhang Y, Zhang LY, et al. Forced running exercise attenuates hippocampal neurogenesis impairment and the neurocognitive deficits induced by whole-brain irradiation via the BDNF-mediated pathway. Biochem Biophys Res Commun 2014;443:646-51.  Back to cited text no. 26
    
27.
McGrath JC, Drummond GB, McLachlan EM, Kilkenny C, Wainwright CL. Guidelines for reporting experiments involving animals: The ARRIVE guidelines. Br J Pharmacol 2010;160:1573-6.  Back to cited text no. 27
    
28.
Motaghinejad M, Seyedjavadein Z, Motevalian M, Asadi M. The neuroprotective effect of lithium against high dose methylphenidate: Possible role of BDNF. Neurotoxicology 2016;56:40-54.  Back to cited text no. 28
    
29.
Motaghinejad M, Motevalian M, Fatima S. Mediatory role of NMDA, AMPA/kainate, GABAA and alpha2 receptors in topiramate neuroprotective effects against methylphenidate induced neurotoxicity in rat. Life Sci 2017;179:37-53.  Back to cited text no. 29
    
30.
Motaghinejad M, Motevalian M, Asadi-Ghalehni M, Motaghinejad O. Attenuation of morphine withdrawal signs, blood cortisol and glucose level with forced exercise in comparison with clonidine. Adv Biomed Res 2014;3:171.  Back to cited text no. 30
[PUBMED]  [Full text]  
31.
D'Hooge R, De Deyn PP. Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 2001;36:60-90.  Back to cited text no. 31
    
32.
Motaghinejad M, Motevalian M, Larijani SF, Khajehamedi Z. Protective effects of forced exercise against methylphenidate-induced anxiety, depression and cognition impairment in rat. Adv Biomed Res 2015;4:134.  Back to cited text no. 32
[PUBMED]  [Full text]  
33.
Bromley-Brits K, Deng Y, Song W. Morris water maze test for learning and memory deficits in Alzheimer's disease model mice. J Vis Exp 2011. pii: 2920.  Back to cited text no. 33
    
34.
Vorhees CV, Williams MT. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nat Protoc 2006;1:848-58.  Back to cited text no. 34
    
35.
Motaghinejad M, Motevalian M, Fatima S, Hashemi H, Gholami M. Curcumin confers neuroprotection against alcohol-induced hippocampal neurodegeneration via CREB-BDNF pathway in rats. Biomed Pharmacother 2017;87:721-40.  Back to cited text no. 35
    
36.
Motaghinejad M, Motevalian M, Fatima S, Faraji F, Mozaffari S. The neuroprotective effect of curcumin against nicotine-induced neurotoxicity is mediated by CREB-BDNF signaling pathway. Neurochem Res 2017;42:2921-32.  Back to cited text no. 36
    
37.
Motaghinejad M, Karimian SM, Motaghinejad O, Shabab B, Asadighaleni M, Fatima S, et al. The effect of various morphine weaning regimens on the sequelae of opioid tolerance involving physical dependency, anxiety and hippocampus cell neurodegeneration in rats. Fundam Clin Pharmacol 2015;29:299-309.  Back to cited text no. 37
    
38.
Weydert CJ, Cullen JJ. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat Protoc 2010;5:51-66.  Back to cited text no. 38
    
39.
Motaghinejad M, Karimian M, Motaghinejad O, Shabab B, Yazdani I, Fatima S, et al. Protective effects of various dosage of curcumin against morphine induced apoptosis and oxidative stress in rat isolated hippocampus. Pharmacol Rep 2015;67:230-5.  Back to cited text no. 39
    
40.
Shamoto-Nagai M, Maruyama W, Hashizume Y, Yoshida M, Osawa T, Riederer P, et al. In parkinsonian substantia nigra, alpha-synuclein is modified by acrolein, a lipid-peroxidation product, and accumulates in the dopamine neurons with inhibition of proteasome activity. J Neural Transm (Vienna) 2007;114:1559-67.  Back to cited text no. 40
    
41.
Arican O, Aral M, Sasmaz S, Ciragil P. Serum levels of TNF-alpha, IFN-gamma, IL-6, IL-8, IL-12, IL-17, and IL-18 in patients with active psoriasis and correlation with disease severity. Mediators Inflamm 2005;2005:273-9.  Back to cited text no. 41
    
42.
Demircan N, Safran BG, Soylu M, Ozcan AA, Sizmaz S. Determination of vitreous interleukin-1 (IL-1) and tumour necrosis factor (TNF) levels in proliferative diabetic retinopathy. Eye (Lond) 2006;20:1366-9.  Back to cited text no. 42
    
43.
Shi YQ, Huang TW, Chen LM, Pan XD, Zhang J, Zhu YG, et al. Ginsenoside rg1 attenuates amyloid-beta content, regulates PKA/CREB activity, and improves cognitive performance in SAMP8 mice. J Alzheimers Dis 2010;19:977-89.  Back to cited text no. 43
    
44.
Lee BH, Kim H, Park SH, Kim YK. Decreased plasma BDNF level in depressive patients. J Affect Disord 2007;101:239-44.  Back to cited text no. 44
    
45.
Scott JC, Woods SP, Matt GE, Meyer RA, Heaton RK, Atkinson JH, et al. Neurocognitive effects of methamphetamine: A critical review and meta-analysis. Neuropsychol Rev 2007;17:275-97.  Back to cited text no. 45
    
46.
Cadet JL, Krasnova IN. Molecular bases of methamphetamine-induced neurodegeneration. Int Rev Neurobiol 2009;88:101-19.  Back to cited text no. 46
    
47.
Nordahl TE, Salo R, Leamon M. Neuropsychological effects of chronic methamphetamine use on neurotransmitters and cognition: A review. J Neuropsychiatry Clin Neurosci 2003;15:317-25.  Back to cited text no. 47
    
48.
Glickstein SB, Schmauss C. Effect of methamphetamine on cognition and repetitive motor behavior of mice deficient for dopamine D2 and D3 receptors. Ann N Y Acad Sci 2004;1025:110-8.  Back to cited text no. 48
    
49.
LaVoie MJ, Card JP, Hastings TG. Microglial activation precedes dopamine terminal pathology in methamphetamine-induced neurotoxicity. Exp Neurol 2004;187:47-57.  Back to cited text no. 49
    
50.
Riddle EL, Fleckenstein AE, Hanson GR. Mechanisms of methamphetamine-induced dopaminergic neurotoxicity. AAPS J 2006;8:E413-8.  Back to cited text no. 50
    
51.
Ramirez SH, Potula R, Fan S, Eidem T, Papugani A, Reichenbach N, et al. Methamphetamine disrupts blood-brain barrier function by induction of oxidative stress in brain endothelial cells. J Cereb Blood Flow Metab 2009;29:1933-45.  Back to cited text no. 51
    
52.
Zweben JE, Cohen JB, Christian D, Galloway GP, Salinardi M, Parent D, et al. Psychiatric symptoms in methamphetamine users. Am J Addict 2004;13:181-90.  Back to cited text no. 52
    
53.
Lin KC, Wang CC, Wang SJ. Bupropion attenuates kainic acid-induced seizures and neuronal cell death in rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 2013;45:207-14.  Back to cited text no. 53
    
54.
Cechetti F, Worm PV, Elsner VR, Bertoldi K, Sanches E, Ben J, et al. Forced treadmill exercise prevents oxidative stress and memory deficits following chronic cerebral hypoperfusion in the rat. Neurobiol Learn Mem 2012;97:90-6.  Back to cited text no. 54
    
55.
Hoffman-Goetz L, Pervaiz N, Guan J. Voluntary exercise training in mice increases the expression of antioxidant enzymes and decreases the expression of TNF-alpha in intestinal lymphocytes. Brain Behav Immun 2009;23:498-506.  Back to cited text no. 55
    
56.
Krasnova IN, Justinova Z, Cadet JL. Methamphetamine addiction: Involvement of CREB and neuroinflammatory signaling pathways. Psychopharmacology (Berl) 2016;233:1945-62.  Back to cited text no. 56
    
57.
Cao G, Zhu J, Zhong Q, Shi C, Dang Y, Han W, et al. Distinct roles of methamphetamine in modulating spatial memory consolidation, retrieval, reconsolidation and the accompanying changes of ERK and CREB activation in hippocampus and prefrontal cortex. Neuropharmacology 2013;67:144-54.  Back to cited text no. 57
    
58.
Watson PA, Reusch JE, McCune SA, Leinwand LA, Luckey SW, Konhilas JP, et al. Restoration of CREB function is linked to completion and stabilization of adaptive cardiac hypertrophy in response to exercise. Am J Physiol Heart Circ Physiol 2007;293:H246-59.  Back to cited text no. 58
    
59.
Yang JL, Lin YT, Chuang PC, Bohr VA, Mattson MP. BDNF and exercise enhance neuronal DNA repair by stimulating CREB-mediated production of apurinic/apyrimidinic endonuclease 1. Neuromolecular Med 2014;16:161-74.  Back to cited text no. 59
    
60.
Chen MJ, Russo-Neustadt AA. Running exercise-induced up-regulation of hippocampal brain-derived neurotrophic factor is CREB-dependent. Hippocampus 2009;19:962-72.  Back to cited text no. 60
    
61.
Młyniec K, Nowak G. Up-regulation of the GPR39 zn2+-sensing receptor and CREB/BDNF/TrkB pathway after chronic but not acute antidepressant treatment in the frontal cortex of zinc-deficient mice. Pharmacol Rep 2015;67:1135-40.  Back to cited text no. 61