An Overview of the CRISPR-Based Genomic- and Epigenome-Editing System: Function, Applications, and Challenges

Reviewers

Authors

1 Department of Medical Genetics, Mashhad University of Medical Sciences, Mashhad, Iran

2 Department of Neuroscience, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

Developing a new strategy for an efficient targeted genome editing has always been a great perspective in biology. Although different approaches have been suggested in the last three decades, each one is confronting with limitations. CRISPR-Cas complex is a bacterial-derived system which made a breakthrough in the area of genome editing. This paper presents a brief history of CRISPR genome editing and discusses thoroughly how it works in bacteria and mammalians. At the end, some applications and challenges of this growing research area are also reviewed. In addition to moving the boundaries of genetics, CRISPR-Cas can also provide the ground for fundamental advances in other fields of biological sciences.

Keywords

1.
Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 1987;169:5429-33.  Back to cited text no. 1
    
2.
Mojica FJ, Ferrer C, Juez G, Rodríguez-Valera F. Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol Microbiol 1995;17:85-93.  Back to cited text no. 2
    
3.
Mojica FJ, Garrett RA. Discovery and Seminal Developments in the CRISPR Field. CRISPR-Cas Systems. Mojica FJM, Garrett RA. Discovery and seminal developments in the CRISPR field. In Barrangou R, van der Oost J, editors, CRISPR-Cas Systems: RNA-mediated Adaptive Immunity in Bacteria and Archaea. Springer VS. 2013. p. 1-31https://doi.org/10.1007/978-3-642-34657-6_1 Springer; 2013. p. 1-31.  Back to cited text no. 3
    
4.
Jansen R, Embden JD, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 2002;43:1565-75.  Back to cited text no. 4
    
5.
Mojica FJ, Díez-Villaseñor C, García-Martínez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 2005;60:174-82.  Back to cited text no. 5
    
6.
Capecchi MR. Altering the genome by homologous recombination. Science 1989;244:1288-92.  Back to cited text no. 6
    
7.
Cohen-Tannoudji M, Robine S, Choulika A, Pinto D, El Marjou F, Babinet C, et al. I-sceI-induced gene replacement at a natural locus in embryonic stem cells. Mol Cell Biol 1998;18:1444-8.  Back to cited text no. 7
    
8.
Richardson C, Moynahan ME, Jasin M. Double-strand break repair by interchromosomal recombination: Suppression of chromosomal translocations. Genes Dev 1998;12:3831-42.  Back to cited text no. 8
    
9.
Rouet P, Smih F, Jasin M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 1994;14:8096-106.  Back to cited text no. 9
    
10.
Bibikova M, Carroll D, Segal DJ, Trautman JK, Smith J, Kim YG, et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol 2001;21:289-97.  Back to cited text no. 10
    
11.
Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, et al. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 2008;31:294-301.  Back to cited text no. 11
    
12.
Gupta RM, Musunuru K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Invest 2014;124:4154-61.  Back to cited text no. 12
    
13.
Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 2009;326:1509-12.  Back to cited text no. 13
    
14.
Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 2010;186:757-61.  Back to cited text no. 14
    
15.
Mussolino C, Morbitzer R, Lütge F, Dannemann N, Lahaye T, Cathomen T. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 2011;39:9283-93.  Back to cited text no. 15
    
16.
Holkers M, Maggio I, Liu J, Janssen JM, Miselli F, Mussolino C, et al. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res 2013;41:e63.  Back to cited text no. 16
    
17.
Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 2011;29:731-4.  Back to cited text no. 17
    
18.
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012;337:816-21.  Back to cited text no. 18
    
19.
Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol 2010;8:317-27.  Back to cited text no. 19
    
20.
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007;315:1709-12.  Back to cited text no. 20
    
21.
Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 2005;151:653-63.  Back to cited text no. 21
    
22.
Marraffini LA. CRISPR-Cas immunity in prokaryotes. Nature 2015;526:55-61.  Back to cited text no. 22
    
23.
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013;339:819-23.  Back to cited text no. 23
    
24.
Mohanraju P, Makarova KS, Zetsche B, Zhang F, Koonin EV, van der Oost J. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 2016;353:aad5147.  Back to cited text no. 24
    
25.
Shrivastav M, De Haro LP, Nickoloff JA. Regulation of DNA double-strand break repair pathway choice. Cell Res 2008;18:134-47.  Back to cited text no. 25
    
26.
Lieber MR, Ma Y, Pannicke U, Schwarz K. The mechanism of vertebrate nonhomologous DNA end joining and its role in V (D) J recombination. DNA Repair (Amst) 2004;3:817-26.  Back to cited text no. 26
    
27.
Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 2015;33:543-8.  Back to cited text no. 27
    
28.
Auer TO, Duroure K, De Cian A, Concordet JP, Del Bene F. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res 2014;24:142-53.  Back to cited text no. 28
    
29.
Saleh-Gohari N, Helleday T. Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res 2004;32:3683-8.  Back to cited text no. 29
    
30.
Komor AC, Zhao KT, Packer MS, Gaudelli NM, Waterbury AL, Koblan LW, et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C: G-to-T: A base editors with higher efficiency and product purity. Sci Adv 2017;3:eaao4774.  Back to cited text no. 30
    
31.
Kim D, Lim K, Kim ST, Yoon SH, Kim K, Ryu SM, et al. Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nat Biotechnol 2017;35:475-80.  Back to cited text no. 31
    
32.
Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 2017;551:464-71.  Back to cited text no. 32
    
33.
Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 2014;159:647-61.  Back to cited text no. 33
    
34.
Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 2015;517:583-8.  Back to cited text no. 34
    
35.
Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc 2013;8:2180-96.  Back to cited text no. 35
    
36.
Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell 2007;128:669-81.  Back to cited text no. 36
    
37.
Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, et al. Editing DNA methylation in the mammalian genome. Cell 2016;167:233-47.e17.  Back to cited text no. 37
    
38.
Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 2015;33:510-7.  Back to cited text no. 38
    
39.
Paddison PJ, Silva JM, Conklin DS, Schlabach M, Li M, Aruleba S, et al. Aresource for large-scale RNA-interference-based screens in mammals. Nature 2004;428:427-31.  Back to cited text no. 39
    
40.
Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003;21:635-7.  Back to cited text no. 40
    
41.
Jackson AL, Linsley PS. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 2010;9:57-67.  Back to cited text no. 41
    
42.
Schumann K, Lin S, Boyer E, Simeonov DR, Subramaniam M, Gate RE, et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc Natl Acad Sci U S A 2015;112:10437-42.  Back to cited text no. 42
    
43.
Gantz VM, Bier E. Genome editing. The mutagenic chain reaction: A method for converting heterozygous to homozygous mutations. Science 2015;348:442-4.  Back to cited text no. 43
    
44.
Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, et al. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito anopheles stephensi. Proc Natl Acad Sci U S A 2015;112:E6736-43.  Back to cited text no. 44
    
45.
Esvelt KM, Smidler AL, Catteruccia F, Church GM. Concerning RNA-guided gene drives for the alteration of wild populations. Elife 2014;3. pii: e03401.  Back to cited text no. 45
    
46.
Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 2013;155:1479-91.  Back to cited text no. 46
    
47.
Zhou Y, Wang P, Tian F, Gao G, Huang L, Wei W, et al. Painting a specific chromosome with CRISPR/Cas9 for live-cell imaging. Cell Res 2017;27:298-301.  Back to cited text no. 47
    
48.
Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 2018;360:439-44.  Back to cited text no. 48
    
49.
Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 2013;31:822-6.  Back to cited text no. 49
    
50.
Zhang F, Wen Y, Guo X. CRISPR/Cas9 for genome editing: Progress, implications and challenges. Hum Mol Genet 2014;23:R40-6.  Back to cited text no. 50
    
51.
Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 2014;32:279-84.  Back to cited text no. 51
    
52.
Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 2013;154:1380-9.  Back to cited text no. 52
    
53.
Davis KM, Pattanayak V, Thompson DB, Zuris JA, Liu DR. Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat Chem Biol 2015;11:316-8.  Back to cited text no. 53
    
54.
Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015;163:759-71.  Back to cited text no. 54
    
55.
Tu Z, Yang W, Yan S, Yin A, Gao J, Liu X, et al. Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos. Sci Rep 2017;7:42081.  Back to cited text no. 55
    
56.
Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 2015;33:538-42.  Back to cited text no. 56
    
57.
Lin S, Staahl BT, Alla RK, Doudna JA. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife 2014;3:e04766.  Back to cited text no. 57
    
58.
Anders C, Niewoehner O, Duerst A, Jinek M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 2014;513:569-73.  Back to cited text no. 58
    
59.
Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 2015;523:481-5.  Back to cited text no. 59
    
60.
Charlesworth CT, Deshpande PS, Dever DP, Dejene B, Gomez-Ospina N, Mantri S, et al. Identification of Pre-Existing Adaptive Immunity to Cas9 Proteins in Humans. BioRxiv; 2018. p. 243345.  Back to cited text no. 60
    
61.
Moreno AM, Palmer N, Aleman F, Chen G, Pla A, Chew WL, et al. Exploring Protein Orthogonality in Immune Space: A Case Study with AAV and Cas9 Orthologs. BioRxiv; 2018. p. 245985.  Back to cited text no. 61
    
62.
Kang XJ, Caparas CIN, Soh BS, Fan Y. Addressing challenges in the clinical applications associated with CRISPR/Cas9 technology and ethical questions to prevent its misuse. Protein Cell 2017;8:791-5.  Back to cited text no. 62
    
63.
Gaj T, Epstein BE, Schaffer DV. Genome engineering using adeno-associated virus: Basic and clinical research applications. Mol Ther 2016;24:458-64.  Back to cited text no. 63
    
64.
Senís E, Fatouros C, Große S, Wiedtke E, Niopek D, Mueller AK, et al. CRISPR/Cas9-mediated genome engineering: An Adeno-Associated Viral (AAV) vector toolbox. Biotechnol J 2014;9:1402-12.  Back to cited text no. 64
    
65.
Murovec J, Pirc Ž, Yang B. New variants of CRISPR RNA-guided genome editing enzymes. Plant Biotechnol J 2017;15:917-26.  Back to cited text no. 65
    
66.
Ramakrishna S, Kwaku Dad AB, Beloor J, Gopalappa R, Lee SK, Kim H. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res 2014;24:1020-7.  Back to cited text no. 66
    
67.
Sato M, Ohtsuka M, Watanabe S, Gurumurthy CB. Nucleic acids delivery methods for genome editing in zygotes and embryos: The old, the new, and the old-new. Biol Direct 2016;11:16.  Back to cited text no. 67
    
68.
Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR. Gene therapy clinical trials worldwide to 2017: An update. J Gene Med 2018;20:e3015.  Back to cited text no. 68
    
69.
Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 2014;370:901-10.  Back to cited text no. 69
    
70.
Cyranoski D. CRISPR gene-editing tested in a person for the first time. Nature 2016;539:479.  Back to cited text no. 70