Expression of CXC Chemokine Receptors in Acute Ulcerative Colitis: Initial Study from an Animal Model

Document Type : Original Article

Authors

1 Cancer and Immunology Research Center; Department of Immunology and Hematology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran

2 Cancer and Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran

Abstract

Background: Ulcerative colitis (UC) is an inflammatory disease which is characterized by infiltration of inflammatory cells, crypt abscesses, distortion of the mucosal glands, and goblet cell depletion. The existence of neutrophil-rich inflammation in colon tissues of patients with UC is one of the most significant histological features of this disease. Nonetheless, the expression of CXCR chemokine receptors which appear as the main chemical mediators governing the migration of neutrophils into the mucosal tissue of patients with UC has not been well clarified. Materials and Methods: In this experimental study, the UC model was induced in Wistar rats by administration of 2 ml 4% acetic acid into the large colon through the rectum. Animals were anesthetized after 48 h; their colon tissue samples were isolated for macroscopic and histopathological examination. The expression of receptor1-7of CXC chemokine was assessed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) technique. Results: Heavy infiltration of neutrophils, coagulative necrosis, and ulcers were observed in H and E staining, which pathologically proved the UC model. qRT-PCR results indicated that CXCR2 as one of the important ELR+ chemokine family receptors bears the highest expression in the UC group (32 fold) than the control group (P ≤ 0.05). In addition, other CXCRs of this group including CXCR1 did not possess any change (P > 0.05). In contrast, RLR negative chemokine family receptors did not show any changes with the normal group. Conclusion: The results showed that CXCR2 is the only receptor for CXCL family which was remarkably upregulated in experimental UC and that CXCR2 might play a significant role in the pathogenesis of UC.

Keywords

1.
Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med 2009;361:2066-78.  Back to cited text no. 1
    
2.
Yu YR, Rodriguez JR. Clinical presentation of Crohn's, ulcerative colitis, and indeterminate colitis: Symptoms, extraintestinal manifestations, and disease phenotypes. Semin Pediatr Surg 2017;26:349-55.  Back to cited text no. 2
    
3.
Raab Y, Gerdin B, Ahlstedt S, Hällgren R. Neutrophil mucosal involvement is accompanied by enhanced local production of interleukin-8 in ulcerative colitis. Gut 1993;34:1203-6.  Back to cited text no. 3
    
4.
Matricon J, Barnich N, Ardid D. Immunopathogenesis of inflammatory bowel disease. Self Nonself 2010;1:299-309.  Back to cited text no. 4
    
5.
Baumgart DC, Sandborn WJ. Inflammatory bowel disease: Clinical aspects and established and evolving therapies. Lancet 2007;369:1641-57.  Back to cited text no. 5
    
6.
Zhang YZ, Li YY. Inflammatory bowel disease: Pathogenesis. World J Gastroenterol 2014;20:91-9.  Back to cited text no. 6
    
7.
MacDermott RP, Sanderson IR, Reinecker HC. The central role of chemokines (chemotactic cytokines) in the immunopathogenesis of ulcerative colitis and Crohn's disease. Inflamm Bowel Dis 1998;4:54-67.  Back to cited text no. 7
    
8.
Papadakis KA, Targan SR. The role of chemokines and chemokine receptors in mucosal inflammation. Inflamm Bowel Dis 2000;6:303-13.  Back to cited text no. 8
    
9.
Zimmerman NP, Vongsa RA, Wendt MK, Dwinell MB. Chemokines and chemokine receptors in mucosal homeostasis at the intestinal epithelial barrier in inflammatory bowel disease. Inflamm Bowel Dis 2008;14:1000-11.  Back to cited text no. 9
    
10.
Howard OM, Ben-Baruch A, Oppenheim JJ. Chemokines: Progress toward identifying molecular targets for therapeutic agents. Trends Biotechnol 1996;14:46-51.  Back to cited text no. 10
    
11.
Horuk R. Chemokine receptors. Cytokine Growth Factor Rev 2001;12:313-35.  Back to cited text no. 11
    
12.
Zlotnik A, Yoshie O. Chemokines: A new classification system and their role in immunity. Immunity 2000;12:121-7.  Back to cited text no. 12
    
13.
Cole KE, Strick CA, Paradis TJ, Ogborne KT, Loetscher M, Gladue RP, et al. Interferon-inducible T cell alpha chemoattractant (I-TAC): A novel Non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J Exp Med 1998;187:2009-21.  Back to cited text no. 13
    
14.
Bizzarri C, Beccari AR, Bertini R, Cavicchia MR, Giorgini S, Allegretti M. ELR+CXC chemokines and their receptors (CXC chemokine receptor 1 and CXC chemokine receptor 2) as new therapeutic targets. Pharmacol Ther 2006;112:139-49.  Back to cited text no. 14
    
15.
Wuyts A, Van Osselaer N, Haelens A, Samson I, Herdewijn P, Ben-Baruch A, et al. Characterization of synthetic human granulocyte chemotactic protein 2: Usage of chemokine receptors CXCR1 and CXCR2 andin vivo inflammatory properties. Biochemistry 1997;36:2716-23.  Back to cited text no. 15
    
16.
Wolf M, Delgado MB, Jones SA, Dewald B, Clark-Lewis I, Baggiolini M. Granulocyte chemotactic protein 2 acts via both IL-8 receptors, CXCR1 and CXCR2. Eur J Immunol 1998;28:164-70.  Back to cited text no. 16
    
17.
Romagnani S. Induction of TH1 and TH2 responses: A key role for the 'natural' immune response? Immunol Today 1992;13:379-81.  Back to cited text no. 17
    
18.
Balabanian K, Lagane B, Infantino S, Chow KY, Harriague J, Moepps B, et al. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem 2005;280:35760-6.  Back to cited text no. 18
    
19.
Legler DF, Loetscher M, Roos RS, Clark-Lewis I, Baggiolini M, Moser B. B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J Exp Med 1998;187:655-60.  Back to cited text no. 19
    
20.
Farooq SM, Stillie R, Svensson M, Svanborg C, Strieter RM, Stadnyk AW. Therapeutic effect of blocking CXCR2 on neutrophil recruitment and dextran sodium sulfate-induced colitis. J Pharmacol Exp Ther 2009;329:123-9.  Back to cited text no. 20
    
21.
Ranganathan P, Jayakumar C, Manicassamy S, Ramesh G. CXCR2 knockout mice are protected against DSS-colitis-induced acute kidney injury and inflammation. Am J Physiol Renal Physiol 2013;305:F1422-7.  Back to cited text no. 21
    
22.
Chami B, Yeung AW, van Vreden C, King NJ, Bao S. The role of CXCR3 in DSS-induced colitis. PLoS One 2014;9:e101622.  Back to cited text no. 22
    
23.
Mascolo N, Izzo AA, Autore G, Maiello FM, Di Carlo G, Capasso F. Acetic acid-induced colitis in normal and essential fatty acid deficient rats. J Pharmacol Exp Ther 1995;272:469-75.  Back to cited text no. 23
    
24.
Dodda D, Chhajed R, Mishra J. Protective effect of quercetin against acetic acid induced inflammatory bowel disease (IBD) like symptoms in rats: Possible morphological and biochemical alterations. Pharmacol Rep 2014;66:169-73.  Back to cited text no. 24
    
25.
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C (T) method. Nat Protoc 2008;3:1101-8.  Back to cited text no. 25
    
26.
Russo RC, Garcia CC, Teixeira MM, Amaral FA. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev Clin Immunol 2014;10:593-619.  Back to cited text no. 26
    
27.
Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, et al. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 2000;52:145-76.  Back to cited text no. 27
    
28.
Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, et al. International union of basic and clinical pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 2014;66:1-79.  Back to cited text no. 28
    
29.
Stillie R, Farooq SM, Gordon JR, Stadnyk AW. The functional significance behind expressing two IL-8 receptor types on PMN. J Leukoc Biol 2009;86:529-43.  Back to cited text no. 29
    
30.
Fu W, Zhang Y, Zhang J, Chen WF. Cloning and characterization of mouse homolog of the CXC chemokine receptor CXCR1. Cytokine 2005;31:9-17.  Back to cited text no. 30
    
31.
Natsui M, Kawasaki K, Takizawa H, Hayashi SI, Matsuda Y, Sugimura K, et al. Selective depletion of neutrophils by a monoclonal antibody, RP-3, suppresses dextran sulphate sodium-induced colitis in rats. J Gastroenterol Hepatol 1997;12:801-8.  Back to cited text no. 31
    
32.
Buanne P, Di Carlo E, Caputi L, Brandolini L, Mosca M, Cattani F, et al. Crucial pathophysiological role of CXCR2 in experimental ulcerative colitis in mice. J Leukoc Biol 2007;82:1239-46.  Back to cited text no. 32
    
33.
Ajuebor MN, Swain MG. Role of chemokines and chemokine receptors in the gastrointestinal tract. Immunology 2002;105:137-43.  Back to cited text no. 33
    
34.
Werner L, Elad H, Brazowski E, Tulchinsky H, Vigodman S, Kopylov U, et al. Reciprocal regulation of CXCR4 and CXCR7 in intestinal mucosal homeostasis and inflammatory bowel disease. J Leukoc Biol 2011;90:583-90.  Back to cited text no. 34
    
35.
Mandai Y, Takahashi D, Hase K, Obata Y, Furusawa Y, Ebisawa M, et al. Distinct roles for CXCR6(+) and CXCR6(-) CD4(+) T cells in the pathogenesis of chronic colitis. PLoS One 2013;8:e65488.  Back to cited text no. 35