1. |
Glick B, Pasternak J. Mulecular Biotechnology: Principles and Application of Recombinant DNA. 2 nd ed. Washington, D. C: ASM Press; 1998.
|
2. |
Vallejo LF, Rinas U. Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins. Microb Cell Fact 2004;3:11.
|
3. |
Pennica D, Holmes WE, Kohr WJ, Harkins RN, Vehar GA, Ward CA, et al. Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature 1983;301:214-21.
|
4. |
Makrides SC. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 1996;60:512-38.
|
5. |
Mandi N, Sundaram KR, Tandra SK, Bandyopadhyay S, Padmanabhan S. Asn and Asn: Critical residues for in vitro biological activity of reteplase. Adv Hematol 2010;2010:172484.
|
6. |
Youchun Z, Wang G, Yang K, Changkai Z. Cloning, expression, and renaturation studies of reteplase. J Microbiol Biotechnol 2003;13:989-92.
|
7. |
Khodabakhsh F, Dehghani Z, Zia MF, Rabbani M, Sadeghi HM. Cloning and expression of functional reteplase in Escherichia coli TOP10. Avicenna J Med Biotechnol 2013;5:168-75.
|
8. |
Hammarström M, Hellgren N, van Den Berg S, Berglund H, Härd T. Rapid screening for improved solubility of small human proteins produced as fusion proteins in Escherichia coli. Protein Sci 2002;11:313-21.
|
9. |
Kapust RB, Waugh DS. Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci 1999;8:1668-74.
|
10. |
Hewitt SN, Choi R, Kelley A, Crowther GJ, Napuli AJ, Van Voorhis WC. Expression of proteins in Escherichia coli as fusions with maltose-binding protein to rescue non-expressed targets in a high-throughput protein-expression and purification pipeline. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011;67:1006-9.
|
11. |
Spirin AS, Baranov VI, Ryabova LA, Ovodov SY, Alakhov YB. A continuous cell-free translation system capable of producing polypeptides in high yield. Science 1988;242:1162-4.
|
12. |
Miller LK. Baculoviruses for foreign gene expression in insect cells. Biotechnology 1988;10:457-65.
|
13. |
Gräslund S, Sagemark J, Berglund H, Dahlgren LG, Flores A, Hammarström M, et al. The use of systematic N- and C-terminal deletions to promote production and structural studies of recombinant proteins. Protein Expr Purif 2008;58:210-21.
|
14. |
Schlieker C, Bukau B, Mogk A. Prevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: Implications for their applicability in biotechnology. J Biotechnol 2002;96:13-21.
|
15. |
Qing G, Ma LC, Khorchid A, Swapna GV, Mal TK, Takayama MM, et al. Cold-shock induced high-yield protein production in Escherichia coli. Nat Biotechnol 2004;22:877-82.
|
16. |
Savchenko A, Yee A, Khachatryan A, Skarina T, Evdokimova E, Pavlova M, et al. Strategies for structural proteomics of prokaryotes: Quantifying the advantages of studying orthologous proteins and of using both NMR and X-ray crystallography approaches. Proteins 2003;50:392-9.
|
17. |
Derewenda ZS. The use of recombinant methods and molecular engineering in protein crystallization. Methods 2004;34:354-63.
|
18. |
Buchner J, Pastan I, Brinkmann U. A method for increasing the yield of properly folded recombinant fusion proteins: Single-chain immunotoxins from renaturation of bacterial inclusion bodies. Anal Biochem 1992;205:263-70.
|
19. |
Shafiee F, Moazen F, Rabbani M, Mir Mohammad Sadeghi H. Optimization of the expression of reteplase in Escherichia coli TOP10 using arabinose promoter. Jundishapur J Nat Pharm Prod 2015;10:e16676.
|
20. |
Leibly DJ, Nguyen TN, Kao LT, Hewitt SN, Barrett LK, Van Voorhis WC. Stabilizing additives added during cell lysis aid in the solubilization of recombinant proteins. PLoS One 2012;7:e52482.
|
21. |
Merchant SS, Allen MD, Kropat J, Moseley JL, Long JC, Tottey S, et al. Between a rock and a hard place: Trace element nutrition in Chlamydomonas. Biochim Biophys Acta 2006;1763:578-94.
|
22. |
Dokmanić I, Sikić M, Tomić S. Metals in proteins: Correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination. Acta Crystallogr D Biol Crystallogr 2008;64:257-63.
|
23. |
Lawal OS. Kosmotropes and chaotropes as they affect functionality of a protein isolate. Food Chem 2006;95:101-7.
|
24. |
Golovanov AP, Hautbergue GM, Wilson SA, Lian LY. A simple method for improving protein solubility and long-term stability. J Am Chem Soc 2004;126:8933-9.
|
25. |
Ignatova Z, Gierasch LM. Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. Proc Natl Acad Sci U S A 2006;103:13357-61.
|
26. |
Expert-Bezançon N, Rabilloud T, Vuillard L, Goldberg ME. Physical-chemical features of non-detergent sulfobetaines active as protein-folding helpers. Biophys Chem 2003;100:469-79.
|
27. |
Rishi V, Anjum F, Ahmad F, Pfeil W. Role of non-compatible osmolytes in the stabilization of proteins during heat stress. Biochem J 1998;329(Pt 1):137-43.
|
28. |
Tiwari A, Bhat R. Stabilization of yeast hexokinase A by polyol osmolytes: Correlation with the physicochemical properties of aqueous solutions. Biophys Chem 2006;124:90-9.
|
29. |
Ghosh R, Sharma S, Chattopadhyay K. Effect of arginine on protein aggregation studied by fluorescence correlation spectroscopy and other biophysical methods. Biochemistry 2009;48:1135-43.
|
30. |
Prasad S, Khadatare PB, Roy I. Effect of chemical chaperones in improving the solubility of recombinant proteins in Escherichia coli. Appl Environ Microbiol 2011;77:4603-9.
|
31. |
Wu B, Nemeth JF, Janecki DJ, Jones B, Obmolova G, Malia TJ, et al. Expression, refolding and purification of a human interleukin-17A variant. Cytokine 2011;53:107-14.
|
32. |
Noritomi H, Kato Y, Kato S. Efficient protein refolding using surfactants at high final protein concentration. J Surf Eng Mater Adv Technol 2014;4:9-13.
|
33. |
Chen J, Liu Y, Wang Y, Ding H, Su Z. Different effects of L-arginine on protein refolding: Suppressing aggregates of hydrophobic interaction, not covalent binding. Biotechnol Prog 2008;24:1365-72.
|
34. |
Abbasian SS, Soufian S, Ghaznavi-Rad E, Abtahi H. High level activity of recombinant lysostaphin after computer simulation and additive-based refolding. Int J Pept Res Ther 2018. https://doi.org/10.1007/s10989-018-9769-7 Fujita K, Nakano R, Nakaba R, Nakamura N, Ohno H. Hydrated ionic liquids enable both solubilisation and refolding of aggregated concanavalin A. Chem Commun (Camb) 2019;55:3578-81.
|
35. |
Bandyopadhyay A, Saxena K, Kasturia N, Dalal V, Bhatt N, Rajkumar A, et al. Chemical chaperones assist intracellular folding to buffer mutational variations. Nat Chem Biol 2012;8:238-45.
|
36. |
Singh A, Upadhyay V, Upadhyay AK, Singh SM, Panda AK. Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb Cell Fact. 2015;14:41.
|