1. |
Nestler EJ, Carlezon WA Jr. The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 2006;59:1151-9.
|
2. |
Pessiglione M, Seymour B, Flandin G, Dolan RJ, Frith CD. Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature 2006;442:1042-5.
|
3. |
Sanchez-Catalan MJ, Kaufling J, Georges F, Veinante P, Barrot M. The antero-posterior heterogeneity of the ventral tegmental area. Neuroscience 2014;282:198-216.
|
4. |
Xiao C, Ye JH. Ethanol dually modulates GABAergic synaptic transmission onto dopaminergic neurons in ventral tegmental area: Role of mu-opioid receptors. Neuroscience 2008;153:240-8.
|
5. |
King HE, Riley AL. A history of morphine-induced taste aversion learning fails to affect morphine-induced place preference conditioning in rats. Learn Behav 2013;41:433-42.
|
6. |
Pessiglione M, Schmidt L, Draganski B, Kalisch R, Lau H, Dolan RJ, et al. How the brain translates money into force: A neuroimaging study of subliminal motivation. Science 2007;316:904-6.
|
7. |
Carta M, Bezard E. Contribution of pre-synaptic mechanisms to L-DOPA-induced dyskinesia. Neuroscience 2011;198:245-51.
|
8. |
Palmiter RD. Dopamine signaling as a neural correlate of consciousness. Neuroscience 2011;198:213-20.
|
9. |
Rice ME, Cragg SJ, Greenfield SA. Characteristics of electrically evoked somatodendritic dopamine release in substantia nigra and ventral tegmental area in vitro. J Neurophysiol 1997;77:853-62.
|
10. |
Cragg S, Rice ME, Greenfield SA. Heterogeneity of electrically evoked dopamine release and reuptake in substantia nigra, ventral tegmental area, and striatum. J Neurophysiol 1997;77:863-73.
|
11. |
Farahimanesh S, Moradi M, Nazari-Serenjeh F, Zarrabian S, Haghparast A. Role of D1-like and D2-like dopamine receptors within the ventral tegmental area in stress-induced and drug priming-induced reinstatement of morphine seeking in rats. Behav Pharmacol 2018;29:426-36.
|
12. |
Nimitvilai S, Brodie MS. Reversal of prolonged dopamine inhibition of dopaminergic neurons of the ventral tegmental area. J Pharmacol Exp Ther 2010;333:555-63.
|
13. |
Isomura Y, Harukuni R, Takekawa T, Aizawa H, Fukai T. Microcircuitry coordination of cortical motor information in self-initiation of voluntary movements. Nat Neurosci 2009;12:1586-93.
|
14. |
Salamone JD, Correa M, Farrar AM, Nunes EJ, Pardo M. Dopamine, behavioral economics, and effort. Front Behav Neurosci 2009;3:13.
|
15. |
Nimitvilai S, Herman M, You C, Arora DS, McElvain MA, Roberto M, et al. Dopamine D2 receptor desensitization by dopamine or corticotropin releasing factor in ventral tegmental area neurons is associated with increased glutamate release. Neuropharmacology 2014;82:28-40.
|
16. |
Kalivas PW, Duffy P. D1 receptors modulate glutamate transmission in the ventral tegmental area. J Neurosci 1995;15:5379-88.
|
17. |
Beckstead MJ, Grandy DK, Wickman K, Williams JT. Vesicular dopamine release elicits an inhibitory postsynaptic current in midbrain dopamine neurons. Neuron 2004;42:939-46.
|
18. |
Zhou FW, Jin Y, Matta SG, Xu M, Zhou FM. An ultra-short dopamine pathway regulates basal ganglia output. J Neurosci 2009;29:10424-35.
|
19. |
Gantz SC, Bunzow JR, Williams JT. Spontaneous inhibitory synaptic currents mediated by a G protein-coupled receptor. Neuron 2013;78:807-12.
|
20. |
Santiago M, Westerink BH. Characterization and pharmacological responsiveness of dopamine release recorded by microdialysis in the substantia nigra of conscious rats. J Neurochem 1991;57:738-47.
|
21. |
Cragg SJ, Greenfield SA. Differential autoreceptor control of somatodendritic and axon terminal dopamine release in substantia nigra, ventral tegmental area, and striatum. J Neurosci 1997;17:5738-46.
|
22. |
de Jong JW, Roelofs TJ, Mol FM, Hillen AE, Meijboom KE, Luijendijk MC, et al. Reducing ventral tegmental dopamine D2 receptor expression selectively boosts incentive motivation. Neuropsychopharmacology 2015;40:2085-95.
|
23. |
Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates in Stereotaxic Coordinates. Elsevier; 2007.
|
24. |
Rodd ZA, Bell RL, Oster SM, Toalston JE, Pommer TJ, McBride WJ, et al. Serotonin-3 receptors in the posterior ventral tegmental area regulate ethanol self-administration of alcohol-preferring (P) rats. Alcohol 2010;44:245-55.
|
25. |
Omelchenko N, Sesack SR. Glutamate synaptic inputs to ventral tegmental area neurons in the rat derive primarily from subcortical sources. Neuroscience 2007;146:1259-74.
|
26. |
Tzschentke TM. Measuring reward with the conditioned place preference paradigm: A comprehensive review of drug effects, recent progress and new issues. Prog Neurobiol 1998;56:613-72.
|
27. |
Steketee JD, Kalivas PW. Drug wanting: Behavioral sensitization and relapse to drug-seeking behavior. Pharmacol Rev 2011;63:348-65.
|
28. |
Ranaldi R, Wise RA. Blockade of D1 dopamine receptors in the ventral tegmental area decreases cocaine reward: Possible role for dendritically released dopamine. J Neurosci 2001;21:5841-6.
|
29. |
Sharf R, Lee DY, Ranaldi R. Microinjections of SCH 23390 in the ventral tegmental area reduce operant responding under a progressive ratio schedule of food reinforcement in rats. Brain Res 2005;1033:179-85.
|
30. |
Carr DB, Sesack SR. Projections from the rat prefrontal cortex to the ventral tegmental area: Target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J Neurosci 2000;20:3864-73.
|
31. |
Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat Rev Neurosci 2013;14:609-25.
|
32. |
Centonze D, Grande C, Saulle E, Martin AB, Gubellini P, Pavón N, et al. Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity. J Neurosci 2003;23:8506-12.
|
33. |
Reynolds JN, Wickens JR. Dopamine-dependent plasticity of corticostriatal synapses. Neural Netw 2002;15:507-21.
|
34. |
Calabresi P, Picconi B, Tozzi A, Di Filippo M. Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci 2007;30:211-9.
|
35. |
Wolf ME, Mangiavacchi S, Sun X. Mechanisms by which dopamine receptors may influence synaptic plasticity. Ann N Y Acad Sci 2003;1003:241-9.
|
36. |
David V, Besson M, Changeux JP, Granon S, Cazala P. Reinforcing effects of nicotine microinjections into the ventral tegmental area of mice: Dependence on cholinergic nicotinic and dopaminergic D1 receptors. Neuropharmacology 2006;50:1030-40.
|
37. |
Cameron DL, Williams JT. Dopamine D1 receptors facilitate transmitter release. Nature 1993;366 (6453):344-7.
|
38. |
Yager LM, Garcia AF, Wunsch AM, Ferguson SM. The ins and outs of the striatum: Role in drug addiction. Neuroscience 2015;301:529-41.
|
39. |
Xue Y, Steketee JD, Rebec GV, Sun W. Activation of D 2-like receptors in rat ventral tegmental area inhibits cocaine-reinstated drug-seeking behavior. Eur J Neurosci 2011;33:1291-8.
|
40. |
Zald DH, Cowan RL, Riccardi P, Baldwin RM, Ansari MS, Li R, et al. Midbrain dopamine receptor availability is inversely associated with novelty-seeking traits in humans. J Neurosci 2008;28:14372-8.
|
41. |
Tournier BB, Steimer T, Millet P, Moulin-Sallanon M, Vallet P, Ibañez V, et al. Innately low D2 receptor availability is associated with high novelty-seeking and enhanced behavioural sensitization to amphetamine. Int J Neuropsychopharmacol 2013;16:1819-34.
|
42. |
Jupp B, Dalley JW. Behavioral endophenotypes of drug addiction: Etiological insights from neuroimaging studies. Neuropharmacology 2014;76(Pt B):487-97.
|
43. |
Robinson TE, Berridge KC. The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Res Brain Res Rev 1993;18:247-91.
|
44. |
Singh ME, Verty AN, McGregor IS, Mallet PE. A cannabinoid receptor antagonist attenuates conditioned place preference but not behavioural sensitization to morphine. Brain Res 2004;1026:244-53.
|
45. |
Kringelbach ML, Berridge KC. Pleasures of the Brain: Series in Affective Science 2010.
|
46. |
Kringelbach ML, Stein A, van Hartevelt TJ. The functional human neuroanatomy of food pleasure cycles. Physiol Behav 2012;106:307-16.
|
47. |
Smith KS, Berridge KC, Aldridge JW. Disentangling pleasure from incentive salience and learning signals in brain reward circuitry. Proc Natl Acad Sci U S A 2011;108:E255-64.
|
48. |
Saunders BT, Robinson TE. The role of dopamine in the accumbens core in the expression of pavlovian-conditioned responses. Eur J Neurosci 2012;36:2521-32.
|
49. |
Leyton M. Dopamine and the regulation of mood and motivational states in humans. TIJN 2008;11:69.
|
50. |
Tanabe LM, Suto N, Creekmore E, Steinmiller CL, Vezina P. Blockade of D2 dopamine receptors in the VTA induces a long-lasting enhancement of the locomotor activating effects of amphetamine. Behav Pharmacol 2004;15:387-95.
|
51. |
Stewart J, Vezina P. Microinjections of Sch-23390 into the ventral tegmental area and substantia nigra pars reticulata attenuate the development of sensitization to the locomotor activating effects of systemic amphetamine. Brain Res 1989;495:401-6.
|