Anti-Toxoplasma activities of the hydroalcoholic extract of some brassicaceae species

Document Type : Original Article

Authors

1 Toxoplasmosis Research Center; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran

2 Student Research Committee; Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran

3 Toxoplasmosis Research Center; Department of Parasitology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran

4 Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran

5 Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran

Abstract

Background: Toxoplasma gondii (T. gondii) is a protozoan parasite that infects a wide range of warm-blooded animals and humans. The conventional anti-Toxoplasma treatments cause significant toxicity. Brassicaceae family contains several medicinal plants with anti-inflammatory, chemopreventive, insecticide, antibacterial, antiviral, and antiparasitic effects. In this study, the hydroalcoholic extract of some Brassicaceae species was investigated against T. gondii in vitroMaterials and Methods: Seeds of Alyssum homolocarpumLepidium perfoliatumLepidium sativum, and aerial parts of Nasturtium officinale and Capsella bursa-pastoris were extracted by maceration method using 80% ethanol. Vero cells were treated with different concentrations (5–600 μg/mL) of the extracts and pyrimethamine (as positive control), and the cellular viability was verified. Next, Vero cells were infected by T. gondii tachyzoites (RH strain), and the viability of the infected cells was measured by a colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Results: The 50% inhibitory concentration values were 5.1, 14.67, 32.49, 37.31, 71.35, and 2.63 μg/mL, and the selectivity indices were 8.06, 2.59, 0.74, 0.78, 0.65 (P < 0.05 compared with positive control), and 3.03 for L. sativumL. perfoliatumN. officinaleA. homolocarpumC. bursa-pastoris, and pyrimethamine, respectively. Conclusion: The results of this study demonstrated that the hydroalcoholic extracts of L. sativum and L. perfoliatum have the promising anti-Toxoplasma activity by growth inhibition of T. gondii tachyzoites in infected cells.

Keywords

1.
Frenkel JK. Pathophysiology of toxoplasmosis. Parasitol Today 1988;4:273-8.  Back to cited text no. 1
    
2.
Cook AJ, Gilbert RE, Buffolano W, Zufferey J, Petersen E, Jenum PA, et al. Sources of toxoplasma infection in pregnant women: European multicentre case-control study. European research network on congenital toxoplasmosis. BMJ 2000;321:142-7.  Back to cited text no. 2
    
3.
Remington JS, Klein JO, Wilson CB, Nizet V, Maldonado YA. Infectious Diseases of the Fetus and Newborn Infant. 7th ed. Philadelphia: Elsevier Saunders; 2011. p. 4.  Back to cited text no. 3
    
4.
Porter SB, Sande MA. Toxoplasmosis of the central nervous system in the acquired immunodeficiency syndrome. N Engl J Med 1992;327:1643-8.  Back to cited text no. 4
    
5.
Weiss LM, Dubey JP. Toxoplasmosis: A history of clinical observations. Int J Parasitol 2009;39:895-901.  Back to cited text no. 5
    
6.
Nissapatorn V. Toxoplasmosis in HIV/AIDS: A living legacy. Southeast Asian J Trop Med Public Health 2009;40:1158-78.  Back to cited text no. 6
    
7.
Ambroise-Thomas P, Pelloux H. Toxoplasmosis – Congenital and in immunocompromised patients: A parallel. Parasitol Today 1993;9:61-3.  Back to cited text no. 7
    
8.
Bosch-Driessen LH, Verbraak FD, Suttorp-Schulten MS, van Ruyven RL, Klok AM, Hoyng CB, et al. A prospective, randomized trial of pyrimethamine and azithromycin vs. pyrimethamine and sulfadiazine for the treatment of ocular toxoplasmosis. Am J Ophthalmol 2002;134:34-40.  Back to cited text no. 8
    
9.
Hampton MM. Congenital toxoplasmosis: A Review. Neonatal Netw 2015;34:274-8.  Back to cited text no. 9
    
10.
Si K, Wei L, Yu X, Wu F, Li X, Li C, et al. Effects of (+)-usnic acid and (+)-usnic acid-liposome on Toxoplasma gondii. Exp Parasitol 2016;166:68-74.  Back to cited text no. 10
    
11.
Anthony JP, Fyfe L, Smith H. Plant active components – A resource for antiparasitic agents? Trends Parasitol 2005;21:462-8.  Back to cited text no. 11
    
12.
Bahmani MP, Bahmani M, Shahsavari S, Naghdi N, Ezatpour B, Moradniani M, et al. A review of the antiparasitic medicinal plants used in ethnobotany of different regions of Iran. Der Pharma Chemica 2016;8:134-8.  Back to cited text no. 12
    
13.
Bahmani M, Tajeddini P, Ezatpour B, Rafieian-Kopaei M, Naghdi N, Asadi-Samani M. Ethnobothanical study of medicinal plants against parasites detected in Shiraz, Southern part of Iran. Der Pharmacia Lettre 2016;8:153-60.  Back to cited text no. 13
    
14.
Deeba F, Muhammad G, Iqbal Z, Hussain I. Survey of ethno-veterinary practices used for different ailments in dairy animals in peri-Urban areas of Faisalabad (Pakistan). Int J Agric Biol 2009;11:535-41.  Back to cited text no. 14
    
15.
Steverding D, Michaels S, Read KD.In vitro and in vivo studies of trypanocidal activity of dietary isothiocyanates. Planta Med 2014;80:183-6.  Back to cited text no. 15
    
16.
Younus I, Siddiq A. In-vitro antileishmanial activity of Raphanus sativus L. Var. caudatus. J Basic Appl Sci 2016;12:242-4.  Back to cited text no. 16
    
17.
Fatima T, Sajid M, Hassan MJ, Iqbal Z. Phytomedicinal value of Moringa oleifera with special reference to antiparasitics. Pak J Agr Sci 2014;51:251-62.  Back to cited text no. 17
    
18.
Kovendan K, Murugan K, Panneerselvam C, Aarthi N, Kumar PM, Subramaniam J, et al. Antimalarial activity of Carica papaya (Family: Caricaceae) leaf extract against Plasmodium falciparum. Asian Pac J Trop Dis 2012;2:S306-11.  Back to cited text no. 18
    
19.
Oka Y, Shuker S, Tkachi N, Trabelcy B, Gerchman Y. Nematicidal activity of Ochradenus baccatus against the root-knot nematode Meloidogyne Javanica. Plant Pathol 2014;63:221-31.  Back to cited text no. 19
    
20.
Vig AP, Rampal G, Thind TS, Arora S. Bio-protective effects of glucosinolates – A review. LWT-Food Sci Technol 2009;42:1561-72.  Back to cited text no. 20
    
21.
Ebrahimzadeh MA, Taheri MM, Ahmadpour E, Montazeri M, Sarvi S, Akbari M, et al. Anti-Toxoplasma effects of methanol extracts of Feijoa sellowiana, quercus castaneifolia, and Allium paradoxum. J Pharmacopuncture 2017;20:220-6.  Back to cited text no. 21
    
22.
Montazeri M, Daryani A, Ebrahimzadeh M, Ahmadpour E, Sharif M, Sarvi S. Effect of propranolol alone and in combination with pyrimethamine on acute murine toxoplasmosis. Jundishapur J Microbiol 2015;8:e22572.  Back to cited text no. 22
    
23.
Choi WH, Jiang MH, Chu JP. Antiparasitic effects of Zingiber officinale (Ginger) extract against Toxoplasma gondii. J Appl Biomed 2013;11:15-26.  Back to cited text no. 23
    
24.
Jezek J, Haggett BG, Atkinson A, Rawson DM. Determination of glucosinolates using their alkaline degradation and reaction with ferricyanide. J Agric Food Chem 1999;47:4669-74.  Back to cited text no. 24
    
25.
Makkar HP, Siddhuraju P, Becker K. Plant secondary metabolites. Plant secondary metabolites. Totowa, New Jersy: Humana Press Inc.; 2007.  Back to cited text no. 25
    
26.
Rodriguez JB, Szajnman SH. New antibacterials for the treatment of toxoplasmosis; a patent review. Expert Opin Ther Pat 2012;22:311-33.  Back to cited text no. 26
    
27.
Karami M, Nosrati A, Naderi M, Makhloogh M, Shahani S. Protective effects of Nasturtium officinale against gamma-irradiation-induced hepatotoxicity in C57 mice. Res J Pharmacogn 2015;3:19-25.  Back to cited text no. 27
    
28.
Calzada F, Barbosa E, Cedillo-Rivera R. Antiamoebic activity of benzyl glucosinolate from Lepidium virginicum. Phytother Res 2003;17:618-9.  Back to cited text no. 28
    
29.
Buchynskyy A, Gillespie JR, Herbst ZM, Ranade RM, Buckner FS, Gelb MH.1-benzyl-3-aryl-2-thiohydantoin derivatives as new anti-Trypanosoma brucei agents: SAR and in vivo efficacy. ACS Med Chem Lett 2017;8:886-91.  Back to cited text no. 29
    
30.
Huang YJ, Peng XR, Qiu MH. Progress on the chemical constituents derived from glucosinolates in maca (Lepidium meyenii). Nat Prod Bioprospect 2018;8:405-12.  Back to cited text no. 30
    
31.
Anti-toxoplasma activities of methanolic extract of Sambucus nigra (Caprifoliaceae) fruits and leaves. Rev Biol Trop 2015;63:7-12.  Back to cited text no. 31
    
32.
Mirzaalizadeh B, Sharif M, Daryani A, Ebrahimzadeh MA, Zargari M, Sarvi S, et al. Effects of aloe vera and eucalyptus methanolic extracts on experimental toxoplasmosis in vitro and in vivo. Exp Parasitol 2018;192:6-11.  Back to cited text no. 32
    
33.
Bennett RN, Mellon FA, Kroon PA. Screening crucifer seeds as sources of specific intact glucosinolates using ion-pair high-performance liquid chromatography negative ion electrospray mass spectrometry. J Agric Food Chem 2004;52:428-38.  Back to cited text no. 33
    
34.
Kermanshai R, McCarry BE, Rosenfeld J, Summers PS, Weretilnyk EA, Sorger GJ. Benzyl isothiocyanate is the chief or sole anthelmintic in papaya seed extracts. Phytochemistry 2001;57:427-35.  Back to cited text no. 34
    
35.
Nagesh M, Chandravadana MV, Sreeja VG, Babu CS. Benzyl isothiocyanate from Carica papaia seed. A potential nematicide against Meloidogyne incognita. Nematol Mediterr 2002;30:155-7.  Back to cited text no. 35