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Introduction
Tissue engineering using stem cells, 
bioactive molecules, and scaffolds in order 
to improve biological functions of damaged 
cartilage is a new therapeutic strategy in 
regenerative medicine.[1] Scaffold structure 
is considered as the most important factor 
to create a better interaction between cells, 
tissue, and bioactive molecules.[2] Therefore, 
the use of specific scaffold with the highest 
porosity as well as biodegradability will 
have maximum performance in tissue 
engineering.

Poly (lactic‑co‑glycolic) acid (PLGA) is 
a copolymer with appropriate mechanical 
properties and biodegradability, which was 
used for chondrogenic differentiation.[3,4] It 
has been reported that PLGA is a hydrophobic 
composite and has a low interaction with 
surrounding cells and tissue.[5] As a result, 
PLGA cannot facilitate cell attachment. 
Therefore, PLGA often used in combination 
with other materials has optimal physical 
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Abstract
Background: Nowadays, cartilage tissue engineering is the best candidate for regeneration of 
cartilage defects. This study evaluates the effect of fibrin/icariin (ICA) nanoparticles (F/I NPs) on 
chondrogenesis of stem cells. Materials and Methods: F/I NPs were characterized by Dynamic 
Light Scattering DLS. Poly (lactic‑co‑glycolic) acid (PLGA)‑F/I NP scaffold was fabricated and 
assessed by scanning electron microscope. Human adipose‑derived stem cells (hADSCs) were 
seeded on scaffold and induced for chondrogenesis. After 14 days, cell viability and gene expression 
were analyzed by the 3‑(4, 5‑ dimethylthiazol‑2yl)‑2, 5‑diphenyltetrazolium bromide (MTT) assay. 
MTT assay and real‑time polymerase chain reaction (RT‑PCR). Results: The size and surface charge 
of F/I NP were about 28–30 nm and − 17, respectively. The average of pore size of PLGA and 
PLGA–fibrin/ICA was 230 and 340 µm, respectively. Cell viability of differentiated cells in P/F 
group was higher than others significantly (P ≤ 0.05). Furthermore, quantitative RT‑PCR analysis 
demonstrated that ICA upregulated cartilaginous‑specific gene expression. Furthermore, the results of 
the expression of type I collagen revealed that ICA downregulated this gene significantly (P < 0.01). 
Conclusions: The results indicated that F/I NP could be a potential factor for chondrogenesis of 
stem cells and downregulation of fibrocartilage marker.
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properties and creates a large and accessible 
surface area for cell anchorage.[6]

Fibrin is a hydrogel‑forming polymer with 
natural origin which usually mimics key 
elements of normal tissue and is able to 
accumulate extracellular matrix (ECM) 
components in the space around the 
cells.[7] Previous studies indicated that 
the hybridization of synthetic and natural 
derived biodegradable polymers such as 
fibrin and PLGA is capable to increase 
cell attachment and proliferation and 
promote early chondrogenesis[8] due to 
increased cell seeding efficiency and 
homogeneity. In addition, in a similar 
experiment, it is reported that fibrin/PLGA 
hybrid scaffold can be considered as a 
potential delivery vehicle for cell and 
growth factors such as transforming 
growth factor‑beta‑3 (TGF‑β3).[9] TGF‑β3 
as a member of TGF‑β family is able Access this article online
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to promote chondrogenesis process through specific 
receptors and with intracellular signaling.[10‑12] This 
factor has a low half‑life and high price and have some 
side effects such as osteophyte formation and synovial 
membrane inflammation.[13] Therefore, to reduce these 
side effects, the replacement of TGF‑β with other agents 
is essential.

Icariin (ICA), an herbal component, widely used in order 
to treatment of fracture and joint diseases, also can act 
as a substitute for growth factors in order to promote 
chondrogenesis of stem cells.[14]

The main mechanism of ICA in the treatment 
of cartilage diseases is not clear. Nevertheless, 
several potential pathways such as increasing the 
expressions of cartilage‑specific genes,[15] decreasing 
the expression of type I collagen,[16] increasing ECM 
synthesis,[15] and anti‑inflammatory[17] effects may 
control its pharmacological effects. Since the half‑life 
of the growth factors is short and when delivered 
exogenously, their efficacy is reduced; nanomaterial 
based systems as novel therapeutic strategies have 
become a primary choice for drug delivery due to 
unique physicochemical properties of nanoparticles.[18] 
Nanoparticles do not have any effect on the biological 
activity of growth factors and substantially prolong 
their biological half‑life.[19] Thus; cell differentiation 
can be successfully supported by continuous release 
of growth factors. According to several current 
published data, nanodrug delivery system by the 
use of different nanoparticles such as PLGA/
hyaluronic acid/fibrin/bioactive glass nanocomposite,[3] 
chitosan nanoparticles,[20] and TGF‑β1‑loaded 
fibrin–poly (lactide‑caprolactone) nanoparticulate[9,21] is an 
attractive system for treatment of cartilage repair.

In this study, we prepared a novel delivery system by 
combining of PLGA‑loaded fibrin–ICA nanoparticle 
scaffolds as a localized delivery system on chondrogenesis 
of human adipose‑derived mesenchymal stem 
cells (hADSCs).

Materials and Methods
Preparation of fibrin–icariin nanoparticles

Thrombin was prepared by incubation of calcium 
gluconate (10 ml) and fresh frozen plasma (16 ml) 
for 90 min. 0.675 mg ICA (Sigma) was added to 
5 ml fibrinogen and mixed with thrombin. Fibrin 
nanoparticles (FNPs) were prepared by dissolving 
200 mg of fibrin in 10 ml of NaOH (1 N). To this, 
diluted HCl (1 N) was added dropwise under vigorous 
stirring (2000 rpm) which eventually led to the 
formation of FNPs at pH 5.5; this was milky white 
color. The FNP was transferred to a dialysis bag 
for 24 h. Later, FNPs were lyophilized and stored 
at −20°C.

Size and surface charge of fibrin nanoparticles

Surface charge (zeta potential) and size distribution of 
FNP were determined using Zetasizer Nanoseries (Malvern 
Instruments, USA).

Loading of fibrin–icariin nanoparticles in poly 
(lactic‑co‑glycolic) acid scaffold

At first, sodium chloride (0.3 g), as a porogen, was poured 
in each well up to a height of 3 mm. In the next stage, 
PLGA (22.5 mg) and fibrin–ICA nanoparticles (2.5 mg) 
were resolved in 1.5 mL of dichloromethane solvent. The 
prepared solution was vortexed and then was stored. The 
frozen solution was then transferred into a freeze‑drying 
vessel (Labconco‑Freezone, USA) for 48 h to eliminate the 
solvent.

Scanning electron microscope imaging

Scanning electron microscope (SEM) (Hitachi S‑3400N) 
was used for the observation of the internal pore 
morphology of the scaffolds.

Contact angle measurement

The hydrophilicity and wet ability of the scaffolds were 
determined using a water contact angle measuring system 
(WCA Optima, AST Products, Inc. software, model 
100‑00‑220, Ramé‑Hart, USA).

Isolation and culturing of stem cells

hADSCs were isolated and cultured according to our 
previous studies.[22]

Cell seeding and differentiation

hADSCs (106 cells/ml) were suspended in chondrogenic 
medium and seeded in sterile scaffolds (PLGA/FNP = P/F 
and PLGA/fibrin–ICA nanoparticles = P/F/I). Each scaffold 
cell in chondrogenic medium with and without TGF‑β3 
(10 ng/ml) was incubated for 2 weeks.

MTT assay

Viability of differentiated cells was assessed by MTT assay 
according to protocol.[3]

Real‑time polymerase chain reaction analysis

Evaluation of SOX9, COLII, COLI, and AGG genes was 
evaluated by real‑time polymerase chain reaction (PCR) 
technique. Total RNA was isolated by Yekta Tajhiz Azma 
kit. Complementary DNA (cDNA) was synthesized by the 
cDNA synthesis kit (YKTA kit). Relative quantification of 
gene expression was measured using Maxima SYBER® 
Rox qPCR Master Mix kit (Fermentas). The experiments 
were performed three times. All primers were designed by 
the Allele ID software (ver. 7.6) in accordance with Table 1.

Statistical analysis

The results were analyzed by SPSS Statistics version 21.0 
software. One‑way ANOVA analysis and least significant 
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difference post hoc test were operated with a significance 
level of P < 0.05.

Results
Size and surface charge of fibrin–icariin nanoparticles

DLS showed that the size of F/I NP almost is 28 nm and 
zeta potential is −17 mv.

Scanning electron microscope results
PLGA scaffold exhibited a porous structure and pore size 
varying from 210 to 250 µm [Figure 1a]. The PLGA/F/ICA 
scaffold had greater pore size (300–380 µm) [Figure 1c]. 
After cell seeding, SEM images of scaffolds indicated 
the differentiated cells attached and spread within the 
pore walls with spindle shape and cytoplasmic process in 
PLGA/F/ICA scaffold and in pure PLGA scaffold cells are 
spherical without process [Figure 1b and d].

Contact angle results
The average of contact angle in PLGA, PLGA/F, and 
PLGA/F/ICA is about 82°, 42°, and 27°, respectively.

Human adipose‑derived stem cells

Stem cells isolated from human adipose tissue revealed 
spindle‑ and stellate‑like cells in monolayer culture 
[Figure 2]. In the third passage, stem cells with 
fibroblast‑like morphology increased.

MTT assay results
Viability of differentiated cells in P/F, P/F/T, P/F/ICA, 
and P/F/ICA/T groups was 100%, 62%, 70%, and 60%, 
respectively. Cell viability in P/F group was higher than 
others significantly (P ≤ 0.05) [Figure 3].

Results of gene expression

The results of real time indicated that 
cartilage‑specific (type II and I collagen and SOX9 and 
aggrecan) gene expression in the experimental groups is 
significantly higher than the stem cell group (P < 0.01).

Aggrecan gene expression in the PLGA/F, PLGA/F/
TGF, PLGA/F/ICA, and PLGA/F/ICA/TGF groups was 

upregulated 5‑, 21‑, 19‑, and 22‑folds compared with 
undifferentiated stem cells (P ≤ 0.01). Expression of SOX9, 
chondrogenic master gene, was increased in PLGA/F: 5 
PLGA/F/TGF: 39, PLGA/F/ICA: 63, PLGA/F/ICA/TGF: 
85 folds compared with stem cells (P ≤ 0.01). COLII gene 
expression was similar in PLGA/F/ICA and PLGA/F/TGF 

Table 1: Gene sequences of primers
Gene Primer sequences (forward and reverse)
Collagen II‑F CTGGTGATGATGGTGAAG
Collagen II‑R CCTGGATAACCTCTGTGA
Sox‑9‑F TTCAGCAGCCAATAAGTG
Sox‑9‑R TTCAGCAGCCAATAAGTG
Collagen I‑F CCTCCAGGGCTCCAACGAG
Collagen I‑R TCAATCACTGTCTTGCCCCA
Aggrecan‑F CCTTGGAGGTCGTGGTGAAAGG
Aggrecan‑R AGGTGAACTTCTCTGGCGACGT
GAPDH‑F AAGCTCATTTCCTGGTATG
GAPDH‑R CTTCCTCTTGTGCTCTTG

Figure 2: Human adipose‑derived stem cells isolated from adipose tissue 
in monolayer culture. (×40)

Figure 3: Comparison of MTT assay results between groups. The viability 
of cells in poly (lactic‑co‑glycolic) acid/fibrin scaffold is highest (P ≤ 0.05)

Figure 1: Scanning electron microscope images of the (a) poly 
(lactic‑co‑glycolic) acid, (b) poly (lactic‑co‑glycolic) acid with adipose‑derived 
stem cells, (c) poly (lactic‑co‑glycolic) acid/fibrin/icariin, (d) poly 
(lactic‑co‑glycolic) acid/fibrin/icariin with adipose‑derived stem cells

dc

ba
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groups (42 and 49 times, respectively) but in PLGA/F/ICA/
TGF group increased 160 folds significantly (P ≤ 0.01).

The result of real time showed that the mRNA expression 
of type I collagen (a fibrocartilage marker) was decreased 
in PLGA/F/ICA group compared with PLGA/F/TGF and 
PLGA/F/ICA/TGF groups [Figure 4].

Discussion
The nanoparticles are widely used in drug delivery, 
regenerative medicine, and tissue engineering researches. 
The particle size at the nanoscale allows for the study 
of the effects of biological and drug molecules and the 
transfer of them to target cells.[23‑26]

In our study, fibrin‑ICA nanoparticles were prepared and 
loaded in PLGA as a scaffold and localized delivery system 
for chondrogenic induction of human adipose‑derived stem 
cells into chondrocytes.

DLS measurements revealed that FNPs exhibited 
particle size in the range of 22–30 nm with the zeta 
potential value of −17.8 mV in deionized water (pH 6.8) 
and −28 mV in PBS (pH 7.4). Such negative zeta potential 
nanoformulations prevent particle aggregation and help 
repel each particle in the suspension, thus maintaining their 
stability for a long time.

Some researchers reported different methods for preparation 
of FNP such as water‑in‑oil emulsification and cross‑linking 
by the factor XIII or glutaraldehyde.[27,28] In our study, no 
cross‑linking agents were used.

Vedakumari et al. used wet precipitation method for 
fabrication of FNPs and reported the FNP size in the range 
of 25–28 nm with the zeta potential value of −10.8 mV in 
deionized water (pH 6.8) and −23 mV in PBS (pH 7.4).[29] 
Nanofibrin preparation method and results in our study 
were similar to Vedakumari report.

PLGA is a Food and Drug Administration‑approved 
material with low immunogenicity, nontoxicity, and 
biodegradability. However, the lack of cell attachment 
sites, poor hydrophilicity, and low surface energy are 
disadvantages of PLGA.[30,31]

By impregnating of PLGA with natural polymers such as 
fibrin for scaffold fabricating, cell adhesion, proliferation, 
and differentiation could be significantly improved.[32,33]

Several previous studies confirmed that the combination of 
fibrin with PLGA promoted homogeneous cell distribution, 
cell seeding, and chondrogenesis of stem cells in vitro and 
in vivo.[34,35]

In our study, the images of SEM indicated that the pore 
sizes of PLGA/F/ICA scaffold were greater than the 
PLGA) 340 and 230 µm respectively). NaCl particles with 
180–220 µm in size that were employed as a porogen for 
the fabrication of porous PLGA/F/ICA scaffolds provided 
enough spaces and proper environment for cell viability and 
attachment. Unlike the PLGA scaffold, SEM demonstrated 
a stable three‑dimensional and interconnected network 
microstructure within the PLGA/F/ICA scaffold [Figure 1]. 
Based on these results, we suppose that the impregnated 

Figure 4: The results of real time‑polymerase chain reaction indicated AGG, SOX9, type II collagen, and type I collagen genes were expressed in all 
experimental groups. Gene expression was normalized to housekeeping gene of GAPDH and calculated by relative expression compared to stem cells. 
**(P ≤ 0.01) P/F (PLGA/FIBRIN), P/ICA/F (PLGA/ICARIIN/FIBRIN), P/F/T (PLGA/FIBRIN/TGF), P/ICA/F/T (PLGA/ICARIIN/FIBRIN/TGF)
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F/ICA contributes to the pores and wall surfaces of the 
PLGA scaffold helping them to support cell attachment and 
implantation of the engineered constructs for regeneration 
and repair of injured tissues.

Lien et al. showed that pore sizes between 250 and 500 µm 
of scaffolds are appropriate for chondrocyte proliferation 
and ECM secretion.[35] Cell phenotype, activity, 
differentiation, and ECM production vary by the size of 
scaffold pores. When the pore size is about 30 times, the 
cell diameter differentiated cells are more likely to be 
chondrocytes.[36‑38]

Growth factors play a crucial role in the regulation of adult 
stem cell (ASC) differentiation. A number of studies have 
demonstrated that bone morphogenetic protein and TGF‑β 
are able to induce chondrogenic differentiation in vitro and 
promote the formation of cartilage‑like tissue in vivo.[39‑42] 
Because the low half‑time of these growth factors and the 
high amount of them can result in side effects, delivery 
system is proposed as a beneficial strategy for release of 
optimal growth factor or drug.[43‑45]

Avocado/soybean, ICA, and pomegranate extraction were 
used in rheumatoid arthritis as an anti‑inflammatory drug. 
ICA is a safe and effective natural anti‑inflammatory drug.

Our studies demonstrated that adipose‑derived stem 
cells (ASCs) from human were successfully isolated and 
were induced to differentiate into chondrocytes on PLGA/
fibrin/ICA scaffold with and without TGF‑β3.

By comparative observations and evaluations of these 
constructions in in vitro culture, we found that the ICA and 
TGF‑β cause in hADSC differentiation into cartilage cells 
and increase the synthesis of cartilage‑specific matrixes. 
ICA and TGF‑β together have better chondrogenic effects 
than one factor alone.

Our results indicated the expression of type II collagen, 
aggrecan, and SOX9 genes in experimental groups. The 
presence of ICA in scaffold as a chondrogenic inducer 
compared with TGF‑β in medium increased the expression 
of SOX9 gene. SOX9, a key gene in chondrogenesis and 
differentiation, promotes the expression of type II collagen 
and aggrecan.[46] Li has demonstrated that the expression 
of SOX9 significantly increased by ICA as growth 
factor.[14] Similarly, our results indicated that ICA with 
TGF‑β3 enhances the expression of SOX9 considerable.

ICA enhances the expression levels of Smad proteins, 
including Smad1, Smad4, and Smad5, which are key 
regulators specific for activation of TGF‑β signaling 
pathway and chondrogenic induction.[47,48] In addition, 
ICA upregulates the expression and secretion of various 
growth factors, including TGF‑β. Some researchers 
have proven that ICA is an anabolic agent, which can 
enhance chondrocyte proliferation and reduce ECM 
degradation.[16,47,49]

Li and et al. showed the ICA will upregulate the 
expressions of cartilage‑specific genes of seeded 
chondrocytes. Furthermore, ICA can increase the synthesis 
of cartilage matrix, accelerates and maintains the formation 
of chondroid tissue.[14]

Our study also showed that TGF‑β3 not only upregulates 
the expression of hyaline cartilage‑specific markers but also 
unavoidably leads to further hypertrophic differentiation 
and contributes to the development of fibrous cartilage. 
The expression of COL I in TGF‑β and ICA groups 
was 35.15 times compared with stem cells, respectively. 
Similarly, other studies found that TGF‑β3 alone led to 
higher expression of type I and X collagens, while ICA 
downregulated these genes.[50]

Conclusions
The results of this study demonstrated that ICA loaded in 
PLGA/FNPs could induce chondrogenic differentiation of 
human adipose‑derived stem cells compared with TGF‑β3 
effectively.
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