Vitamin D status in infants during the first 9 months of age and its effect on growth and other biochemical markers: A prospective cohort study


1 Department of Pediatrics, LLRM Medical College, Meerut, Uttar Pradesh, India

2 Department of Endocrinology, Dr. RMLIMS, Lucknow, Uttar Pradesh, India

3 Department of Radiodiagnosis, King George's Medical College, Lucknow, Uttar Pradesh, India


Background: Despite food fortification policies in many countries and recommendations for Vitamin D supplementation of at-risk groups, Vitamin D deficiency (VDD) and infantile rickets remain major public health challenges in many developed and developing countries. Materials and Methods: Ninety-six participants at birth were enrolled and followed up until 9 months of age. Serum 25OHD was estimated in cord blood at birth and at 14 ± 1 weeks of life. Seventy-seven participants were followed up at 9 months for estimation of serum 25OHD, parathyroid hormone (PTH), alkaline phosphatase (ALP), calcium, and phosphorus. VDD was defined as serum 25OHD <15 ng/mL as per USIOM guidelines. Results: Serum 25OHD levels at 9 months of age (15.78 ± 8.97 ng/mL) were significantly increased in comparison to the level of 3 months of age (14.04 ± 7.10 ng/mL) and at birth (8.94 ± 2.24 ng/mL). At birth, all the participants (77) were deficient in 25OHD levels. It was found that 16/94 (17%) and 19/77 (24.7%) participants at 3 and 9 months of age, respectively, became Vitamin D sufficient without any Vitamin D supplementation. There was a significant inverse correlation between serum 25OHD and PTH concentration (r= −0.522,P < 0.001), serum 25OHD and ALP (r= −0.501,P < 0.001). It was found that reduction in serum Vitamin D level to <10.25 ng/mL results in a surge of serum PTH. Conclusion: VDD is common from birth to 9 months of age but incidence decreases spontaneously even without supplementation. Furthermore, a large number of babies may be falsely labeled as Vitamin D deficient with currently followed cutoffs. Hence a new cutoff for VDD needs to be established for neonates and infants.


Dawodu A, Wagner CL. Prevention of vitamin D deficiency in mothers and infants worldwide – A paradigm shift. Paediatr Int Child Health 2012;32:3-13.  Back to cited text no. 1
Choi YJ, Kim MK, Jeong SJ. Vitamin D deficiency in infants aged 1 to 6 months. Korean J Pediatr 2013;56:205-10.  Back to cited text no. 2
Jain V, Gupta N, Kalaivani M, Jain A, Sinha A, Agarwal R. Vitamin D deficiency in healthy breastfed term infants at 3 months and their mothers in India: Seasonal variation and amp; amp; determinants. Indian J Med Res 2011;133:267-73.  Back to cited text no. 3
[PUBMED]  [Full text]  
Sai AJ, Walters RW, Fang X, Gallagher JC. Relationship between vitamin D, parathyroid hormone, and bone health. J Clin Endocrinol Metab 2011;96:E436-46.  Back to cited text no. 4
Misra M, Pacaud D, Petryk A, Collett-Solberg PF, Kappy M, Drug and Therapeutics Committee of the Lawson Wilkins Pediatric Endocrine Society. Vitamin D deficiency in children and its management: Review of current knowledge and recommendations. Pediatrics 2008;122:398-417.  Back to cited text no. 5
Souberbielle JC, Lawson-Body E, Hammadi B, Sarfati E, Kahan A, Cormier C. The use in clinical practice of parathyroid hormone normative values established in vitamin D-sufficient subjects. J Clin Endocrinol Metab 2003;88:3501-4.  Back to cited text no. 6
Gordon CM, Feldman HA, Sinclair L, Williams AL, Kleinman PK, Perez-Rossello J, et al. Prevalence of vitamin D deficiency among healthy infants and toddlers. Arch Pediatr Adolesc Med 2008;162:505-12.  Back to cited text no. 7
Challa A, Ntourntoufi A, Cholevas V, Bitsori M, Galanakis E, Andronikou S. Breastfeeding and vitamin D status in Greece during the first 6 months of life. Eur J Pediatr 2005;164:724-9.  Back to cited text no. 8
Dawodu A, Agarwal M, Hossain M, Kochiyil J, Zayed R. Hypovitaminosis D and vitamin D deficiency in exclusively breast-feeding infants and their mothers in summer: A justification for Vitamin D supplementation of breast-feeding infants. J Pediatr 2003;142:169-73.  Back to cited text no. 9
Við Streym S, Kristine Moller U, Rejnmark L, Heickendorff L, Mosekilde L, Vestergaard P. Maternal and infant vitamin D status during the first 9 months of infant life-a cohort study. Eur J Clin Nutr 2013;67:1022-8.  Back to cited text no. 10
Goswami R, Gupta N, Goswami D, Marwaha RK, Tandon N, Kochupillai N. Prevalence and significance of low 25-hydroxyvitamin D concentrations in healthy subjects in Delhi. Am J Clin Nutr 2000;72:472-5.  Back to cited text no. 11
Bhalala U, Desai M, Parekh P, Mokal R, Chheda B. Subclinical hypovitaminosis D among exclusively breastfed young infants. Indian Pediatr 2007;44:897-901.  Back to cited text no. 12
Natarajan CK, Sankar MJ, Agarwal R, Pratap OT, Jain V, Gupta N, et al. Trial of daily vitamin D supplementation in preterm infants. Pediatrics 2014;133:e628-34.  Back to cited text no. 13
Amour P, Rousseau L, Hornyak S, Yang Z, Cantor T. Influence of secondary hyperparathyroidism induced by low dietary calcium, Vitamin D deficiency, and renal failure on circulating rat PTH molecular forms. Int J Endocrinol 2011;2011:469783.  Back to cited text no. 14
Thacher TD, Fischer PR, Pettifor JM. Rickets: Vitamin D and calcium deficiency. J Bone Miner Res 2007;22:638.  Back to cited text no. 15
Saliba W, Barnett O, Rennert HS, Lavi I, Rennert G. The relationship between serum 25(OH)D and parathyroid hormone levels. Am J Med 2011;124:1165-70.  Back to cited text no. 16
do Prado MR, Oliveira Fde C, Assis KF, Ribeiro SA, do Prado Junior PP, Sant'Ana LF, et al. Prevalence of Vitamin D deficiency and associated factors in women and newborns in the immediate postpartum period. Rev Paul Pediatr 2015;33:287-94.  Back to cited text no. 17
Haugen J, Ulak M, Chandyo RK, Henjum S, Thorne-Lyman AL, Ueland PM, et al. Low prevalence of Vitamin D insufficiency among Nepalese infants despite high prevalence of Vitamin D insufficiency among their mothers. Nutrients 2016;8:825.  Back to cited text no. 18
Fink C, Peters RL, Koplin JJ, Brown J, Allen KJ. Factors affecting Vitamin D Status in Infants. Children (Basel) 2019; Jan 08;6 (1)  Back to cited text no. 19
Jesudason D, Need AG, Horowitz M, O'Loughlin PD, Morris HA, Nordin BE. Relationship between serum 25-hydroxyvitamin D and bone resorption markers in Vitamin D insufficiency. Bone 2002;31:626-30.  Back to cited text no. 20
Docio S, Riancho JA, Pérez A, Olmos JM, Amado JA, González-Macías J. Seasonal deficiency of vitamin D in children: A potential target for osteoporosis-preventing strategies? J Bone Miner Res 1998;13:544-8.  Back to cited text no. 21
Lips P. Vitamin D deficiency and osteoporosis: The role of vitamin D deficiency and treatment with vitamin D and analogues in the prevention of osteoporosis-related fractures. Eur J Clin Invest 1996;26:436-42.  Back to cited text no. 22
Schmidt-Gayk H, Bouillon R, Roth HJ. Measurement of Vitamin D and its metabolites (calcidiol and calcitriol) and their clinical significance. Scand J Clin Lab Invest Suppl 1997;227:35-45.  Back to cited text no. 23