Prediction of single-nucleotide polymorphisms within microRNAs binding sites of neuronal genes related to multiple sclerosis: A preliminary study

Document Type : Original Article

Authors

1 Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran

2 Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran

Abstract

Background: Different genetic variants, including the single-nucleotide polymorphisms (SNPs) present in microRNA recognition elements (MREs) within 3'UTR of genes, can affect miRNA-mediated gene regulation and susceptibility to a variety of human diseases such as multiple sclerosis (MS), a disease of the central nervous system. Since the expression of many genes associated with MS is controlled by microRNAs (miRNAs), the aim of this study was to analyze SNPs within miRNA binding sites of some neuronal genes associated with MS. Materials and Methods: Fifty-seven neuronal genes related to MS were achieved using dbGaP, DAVID, DisGeNET, and Oviddatabases. 3'UTR of candidate genes were assessed for SNPs, and miRNAs' target prediction databases were used for predicting miRNA binding sites. Results: Three hundred and eight SNPs (minor allele frequency >0.05) were identified in miRNA binding sites of 3'UTR of 44 genes. Among them, 42 SNPs in 22 genes had miRNA binding sites and miRNA prediction tools suggested 71 putative miRNAs binding sites on these genes. Moreover, in silico analysis predicted 22 MRE-modulating SNPs and 22 MRE-creating SNPs in the 3'UTR of these candidate genes. Conclusions: These candidate MRE-SNPs can alter miRNAs binding sites and mRNA gene regulation. Therefore, these genetic variants and miRNAs might be involved in MS susceptibility and pathogenesis and hence would be valuable for further functional verification investigation.

Keywords

1.
Hecker M, Boxberger N, Illner N, Fitzner B, Schröder I, Winkelmann A, et al. A genetic variant associated with multiple sclerosis inversely affects the expression of CD58 and microRNA-548ac from the same gene. PLoS Genet 2019;15:e1007961.  Back to cited text no. 1
    
2.
Nakahara J, Maeda M, Aiso S, Suzuki N. Current concepts in multiple sclerosis: Autoimmunity versus oligodendrogliopathy. Clin Rev Allergy Immunol 2012;42:26-34.  Back to cited text no. 2
    
3.
Zindler E, Zipp F. Neuronal injury in chronic CNS inflammation. Best Pract Res Clin Anaesthesiol 2010;24:551-62.  Back to cited text no. 3
    
4.
Regev K, Paul A, Healy B, von Glenn F, Diaz-Cruz C, Gholipour T, et al. Comprehensive evaluation of serum microRNAs as biomarkers in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 2016;3:e267.  Back to cited text no. 4
    
5.
Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility in microRNA target recognition. Nat Genet 2007;39:1278-84.  Back to cited text no. 5
    
6.
Lheureux S, Lambert B, Krieger S, Legros A, Vaur D, Denoyelle C, et al. Two novel variants in the 3'UTR of the BRCA1 gene in familial breast and/or ovarian cancer. Breast Cancer Res Treat 2011;125:885-91.  Back to cited text no. 6
    
7.
Piñero J, Bravo À, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J, Centeno E, et al. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res 2017;45:D833-9.  Back to cited text no. 7
    
8.
Bruno AE, Li L, Kalabus JL, Pan Y, Yu A, Hu Z. miRdSNP: A database of disease-associated SNPs and microRNA target sites on 3'UTRs of human genes. BMC Genomics 2012;13:44.  Back to cited text no. 8
    
9.
Liu C, Zhang F, Li T, Lu M, Wang L, Yue W, et al. MirSNP, a database of polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in GWAS SNPs and eQTLs. BMC Genomics 2012;13:661.  Back to cited text no. 9
    
10.
Kumar A, Wong AK, Tizard ML, Moore RJ, Lefèvre C. miRNA_Targets: A database for miRNA target predictions in coding and non-coding regions of mRNAs. Genomics 2012;100:352-6.  Back to cited text no. 10
    
11.
Lipchina I, Elkabetz Y, Hafner M, Sheridan R, Mihailovic A, Tuschl T, et al. Genome-wide identification of microRNA targets in human ES cells reveals a role for miR-302 in modulating BMP response. Genes Dev 2011;25:2173-86.  Back to cited text no. 11
    
12.
Ziebarth JD, Bhattacharya A, Chen A, Cui Y. PolymiRTS Database 2.0: Linking polymorphisms in microRNA target sites with human diseases and complex traits. Nucleic Acids Res 2012;40:D216-21.  Back to cited text no. 12
    
13.
Landi D, Barale R, Gemignani F, Landi S. Prediction of the Biological Effect of Polymorphisms Within microRNA Binding Sites. Methods Mol. Biol.,; 2011.676, p. 197-210.  Back to cited text no. 13
    
14.
Hauser SL, Oksenberg JR. The neurobiology of multiple sclerosis: Genes, inflammation, and neurodegeneration. Neuron 2006;52:61-76.  Back to cited text no. 14
    
15.
Dehghanzad R, Pahlevan Kakhki M, Alikhah A, Sahraian MA, Behmanesh M. The putative association of TOB1-AS1 long non-coding RNA with immune tolerance: A study on multiple sclerosis patients. Neuromolecular Med 2020;22:100-10.  Back to cited text no. 15
    
16.
International HapMap 3 Consortium, Altshuler DM, Gibbs RA, Peltonen L, Altshuler DM, Gibbs RA, et al. Integrating common and rare genetic variation in diverse human populations. Nature 2010;467:52-8.  Back to cited text no. 16
    
17.
Lill CM, Schilling M, Ansaloni S, Schröder J, Jaedicke M, Luessi F, et al. Assessment of microRNA-related SNP effects in the 3′ untranslated region of the IL22RA2 risk locus in multiple sclerosis. Neurogenetics 2014;15:129-34.  Back to cited text no. 17
    
18.
Douglas CM. The role of bioinformatics in facilitating translational science and medicine. TECNOSCIENZA Ital J Sci Technol Stud 2014;5:141-64.  Back to cited text no. 18
    
19.
Selmaj I, Cichalewska M, Namiecinska M, Galazka G, Horzelski W, Selmaj KW, et al. Global exosome transcriptome profiling reveals biomarkers for multiple sclerosis. Ann Neurol 2017;81:703-17.  Back to cited text no. 19
    
20.
Ghafouri-Fard S, Taheri M. A comprehensive review of non-coding RNAs functions in multiple sclerosis. Eur J Pharmacol 2020;879:173127.  Back to cited text no. 20
    
21.
Mameli G, Arru G, Caggiu E, Niegowska M, Leoni S, Madeddu G, et al. Natalizumab therapy modulates miR-155, miR-26a and proinflammatory cytokine expression in MS patients. PLoS One 2016;11:e0157153.  Back to cited text no. 21
    
22.
Søndergaard HB, Hesse D, Krakauer M, Sørensen PS, Sellebjerg F. Differential microRNA expression in blood in multiple sclerosis. Mult Scler 2013;19:1849-57.  Back to cited text no. 22
    
23.
Martinez B, Peplow PV. MicroRNAs in blood and cerebrospinal fluid as diagnostic biomarkers of multiple sclerosis and to monitor disease progression. Neural Regen Res 2020;15:606-19.  Back to cited text no. 23
[PUBMED]  [Full text]  
24.
Regev K, Healy BC, Paul A, Diaz-Cruz C, Mazzola MA, Raheja R, et al. Identification of MS-specific serum miRNAs in an international multicenter study. Neurol Neuroimmunol Neuroinflamm 2018;5:e491.  Back to cited text no. 24
    
25.
Zhou Z, Xiong H, Xie F, Wu Z, Feng Y. A Meta-Analytic Review of the Value of miRNA for Multiple Sclerosis Diagnosis. Front Neurol 2020;11:132.  Back to cited text no. 25
    
26.
Kheiri S, Aliarab A, Haghighatfard H, Sadeghi H. Prioritization of rs187728237 and rs80320514 as miRNA-related variants of human AEG-1 gene. Med Lab J 2018;12:6-11.  Back to cited text no. 26
    
27.
Casalino G, Castellano G, Consiglio A, Liguori M, Nuzziello N, Primiceri D. A predictive model for microRNA expressions in pediatric multiple sclerosis detection. In Proceedings of the International Conference on Modeling Decisions for Artificial Intelligence, Berlin, Germany, 26–30 August 2019; pp.  Back to cited text no. 27
    
28.
Quintana E, Ortega FJ, Robles-Cedeño R, Villar ML, Buxó M, Mercader JM, et al. miRNAs in cerebrospinal fluid identify patients with MS and specifically those with lipid-specific oligoclonal IgM bands. Mult Scler 2017;23:1716-26.  Back to cited text no. 28
    
29.
Mi S, Miller RH, Lee X, Scott ML, Shulag-Morskaya S, Shao Z, et al. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci 2005;8:745-51.  Back to cited text no. 29
    
30.
Gaughwin PM, Ciesla M, Lahiri N, Tabrizi SJ, Brundin P, Björkqvist M. Hsa-miR-34b is a plasma-stable microRNA that is elevated in pre-manifest Huntington's disease. Hum Mol Genet 2011;20:2225-37.  Back to cited text no. 30
    
31.
Hoye ML, Archambault AS, Gordon TM, Oetjen LK, Cain MD, Klein RS, et al. MicroRNA signature of central nervous system-infiltrating dendritic cells in an animal model of multiple sclerosis. Immunology 2018;155:112-22.  Back to cited text no. 31
    
32.
Yan S, Zhang H, Xie W, Meng F, Zhang K, Jiang Y, et al. Altered microRNA profiles in plasma exosomes from mesial temporal lobe epilepsy with hippocampal sclerosis. Oncotarget 2017;8:4136-46.  Back to cited text no. 32