1. |
Anusavice KJ. Phillip's science of dental materials. China. 11 th ed. USA: Elsevier; 2003. p. 655-717.
|
2. |
Ioannis SC. Novel nanocomposites and noanoceramics based on polymer nanofibers using electrospining process-A review. J Mater Process Technol 2005;167:283-93.
|
3. |
Guo G, Fan Y, Zhang JF, Hagan JL, Xu X. Novel dental composites reinforced with zirconia-silica ceramic nanofibers. Dent Mater 2012;28:360-8.
|
4. |
El-Saadany AF, El-Safty SM, Karim UM, El-Refaie SK. Reinforcing experimental resin composite with synthesized zirconia and alumina nanofibers: Evaluation of cuspal fracture, flexural strength, flexural modulus and fracture toughness. Tant Dent J 2019;16:149-62.
|
5. |
Tinschert J, Natt G, Mautsch W, Augthun M, Spiekermann H. Fracture resistance of lithium disilicate-, alumina-, and zirconia-based three-unit fixed partial dentures: A laboratory study. Int J Prosthodont 2001;14:231-8.
|
6. |
Xiao-ping L, Jie-mo T, Yun-long Z, Ling W. Strength and fracture toughness of MgO-modified glass infiltrated alumina for CAD/CAM. Dent Mater 2002;18:216-20.
|
7. |
Rizkalla AS, Jones DW. Mechanical properties of commercial high strength ceramic core materials. Dent Mater 2004;20:207-12.
|
8. |
Yilmaz H, Aydin C, Gul BE. Flexural strength and fracture toughness of dental core ceramics. J Prosthet Dent 2007;98:120-8.
|
9. |
Deany IL. Recent advances in ceramics for dentistry. Crit Rev Oral Biol Med 1996;7:134-43.
|
10. |
Hondrum SO. A review of the strength properties of dental ceramics. J Prosthet Dent 1992;67:859-65.
|
11. |
Tore D. Reinforcement of porcelain crowns with silicone carbide fibers. J Prosthet Dent 1980;43:40-1.
|
12. |
Tokunaga R, Takahashi H, Iwasaki N, Kobayashi M, Tonami K, Kurosaki N. Effect of polymorphism of SiO2 addition on mechanical properties of Feldspathic porcelains. Dent Mater J 2008;27:347-55.
|
13. |
Kon M, O'Brien WJ, Rasmussen ST, Asaoka K. Mechanical properties of glass-only porcelains prepared by the use of two feldspathic frits with different thermal properties. J Dent Res 2001;80:1758-63.
|
14. |
Chen X, Chadwick TC, Wilson RM, Hill RG, Cattell MJ. Crystallization and flexural strength optimization of fine-grained leucite glass-ceramics for dentistry. Dent Mater 2011;27:1153-61.
|
15. |
Fischer H, Marx R. Improvement of strength parameters of a leucite-reinforced glass ceramic by dual-ion exchange. J Dent Res 2001;80:336-9.
|
16. |
Rosa V, Yoshimura HN, Pinto MM, Fredericci C, Cesar PF. Effect of ion exchange on strength and slow crack growth of a dental porcelain. Dent Mater 2009;25:736-43.
|
17. |
Fathi H, Johnson A, van Noort R, Ward JM. The influence of calcium fluoride (CaF2) on biaxial flexural strength of apatite-mullite glass-ceramic materials. Dent Mater 2005;21:846-51.
|
18. |
Prasad S, Monaco EA Jr., Kim H, Davis EL, Brewer JD. Comparison of porcelain surface and flexural strength obtained by microwave and conventional oven glazing. J Prosthet Dent 2009;101:20-8.
|
19. |
Jhaveri HM, Balaji PR. Nanotechnolgy: The future of dentistry. J Indian Prosthodont Soc 2005;5:15-7. [Full text]
|
20. |
Salata O. Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2004;2:3.
|
21. |
Sasikala C, Chander NG. Comparative evaluation of flexural strength of nano-zirconia-integrated pressable feldspathic and lithium disilicate ceramics. J Contemp Dent Pract 2018;19:339-44.
|