1. |
Vistbakka J, Sumelahti ML, Lehtimäki T, Elovaara I, Hagman S. Evaluation of serum miR-191-5p, miR-24-3p, miR-128-3p, and miR-376c-3 in multiple sclerosis patients. Acta Neurol Scand 2018;138:130-6.
|
2. |
Zhang L, Wu H, Zhao M, Chang C, Lu Q. Clinical significance of miRNAs in autoimmunity. J Autoimmun 2020;109:102438.
|
3. |
Tahamtan A, Teymoori-Rad M, Nakstad B, Salimi V. Anti-inflammatory microRNAs and their potential for inflammatory diseases treatment. Front Immunol 2018;9:1377.
|
4. |
Olek MJ, Howard J. Evaluation and Diagnosis of Multiple Sclerosis in Adults. Wolters Kluwer: UpToDate; 2019.
|
5. |
Kadowaki A, Quintana FJ. The Gut-CNS axis in multiple sclerosis. Trends Neurosci 2020;43:622-34.
|
6. |
Chen C, Zhou Y, Wang J, Yan Y, Peng L, Qiu W. Dysregulated microRNA involvement in multiple sclerosis by induction of T helper 17 cell differentiation. Front Immunol 2018;9:1256.
|
7. |
Ghasemi N, Razavi S, Nikzad E. Multiple sclerosis: Pathogenesis, symptoms, diagnoses and cell-based therapy. Cell J 2017;19:1-10.
|
8. |
Eshaghi A, Young AL, Wijeratne PA, Prados F, Arnold DL, Narayanan S, et al. Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data. Nat Commun 2021;12:2078.
|
9. |
Viswambharan V, Thanseem I, Vasu MM, Poovathinal SA, Anitha A. miRNAs as biomarkers of neurodegenerative disorders. Biomark Med 2017;11:151-67.
|
10. |
Dweep H, Gretz N, Sticht C. miRWalk database for miRNA-target interactions. Methods Mol Biol 2014;1182:289-305.
|
11. |
Martinez B, Peplow PV. MicroRNAs as disease progression biomarkers and therapeutic targets in experimental autoimmune encephalomyelitis model of multiple sclerosis. Neural Regen Res 2020;15:1831-7. [ PUBMED] [Full text]
|
12. |
Misso G, Zarone MR, Lombardi A, Grimaldi A, Cossu AM, Ferri C, et al. miR-125b upregulates miR-34a and sequentially activates stress adaption and Cell death mechanisms in multiple myeloma. Mol Ther Nucleic Acids 2019;16:391-406.
|
13. |
Orefice NS, Guillemot-Legris O, Capasso R, Bottemanne P, Hantraye P, Caraglia M, et al. miRNA profile is altered in a modified EAE mouse model of multiple sclerosis featuring cortical lesions. Elife 2020;9. doi: 10.7554/eLife.56916.
|
14. |
Liguori M, Nuzziello N, Licciulli F, Consiglio A, Simone M, Viterbo RG, et al. Combined microRNA and mRNA expression analysis in pediatric multiple sclerosis: An integrated approach to uncover novel pathogenic mechanisms of the disease. Hum Mol Genet 2018;27:66-79.
|
15. |
Zhou B, Zuo XX, Li YS, Gao SM, Dai XD, Zhu HL, et al. Integration of microRNA and mRNA expression profiles in the skin of systemic sclerosis patients. Sci Rep 2017;7:42899.
|
16. |
Islam T, Rahman MR, Karim MR, Huq F, Quinn JM, Moni MA. Detection of multiple sclerosis using blood and brain cells transcript profiles: Insights from comprehensive bioinformatics approach. Inform Med Unlocked 2019;16:100201.
|
17. |
Basak J, Majsterek I. miRNA-Dependent CD4 +T cell differentiation in the pathogenesis of multiple sclerosis. Mult Scler Int 2021;2021:8825588.
|
18. |
Ma X, Zhou J, Zhong Y, Jiang L, Mu P, Li Y, et al. Expression, regulation and function of microRNAs in multiple sclerosis. Int J Med Sci 2014;11:810-8.
|
19. |
Fattahi M, Eskandari N, Sotoodehnejadnematalahi F, Shaygannejad V, Kazemi M. Comparison of the expression of miR-326 between interferon beta responders and non-responders in relapsing-remitting multiple sclerosis. Cell J 2020;22:92-5.
|
20. |
Karimi L, Eskandari N, Shaygannejad V, Zare N, Andalib A, Khanahmad H, et al. Comparison of expression levels of miR-29b-3p and miR-326 in T helper-1 and T helper-17 cells isolated from responsive and non-responsive relapsing-remitting multiple sclerosis patients treated with interferon-beta. Iran J Allergy Asthma Immunol 2020;19:416-25.
|
21. |
Gao Y, Han D, Feng J. MicroRNA in multiple sclerosis. Clin Chim Acta 2021;516:92-9.
|
22. |
Yasuda K, Takeuchi Y, Hirota K. The pathogenicity of Th17 cells in autoimmune diseases. Semin Immunopathol 2019;41:283-97.
|
23. |
Huang J, Xu X, Yang J. miRNAs alter T helper 17 cell fate in the pathogenesis of autoimmune diseases. Front Immunol 2021;12:593473.
|
24. |
Li B, Huang L, Lv P, Li X, Liu G, Chen Y, et al. The role of Th17 cells in psoriasis. Immunol Res 2020;68:296-309.
|
25. |
Halwani R, Sultana A, Vazquez-Tello A, Jamhawi A, Al-Masri AA, Al-Muhsen S. Th-17 regulatory cytokines IL-21, IL-23, and IL-6 enhance neutrophil production of IL-17 cytokines during asthma. J Asthma 2017;54:893-904.
|
26. |
Jafarzadeh A, Ahangar-Parvin R, Nemat M, Taghipour Z, Shamsizadeh A, Ayoobi F, et al. Ginger extract modulates the expression of IL-12 and TGF-β in the central nervous system and serum of mice with experimental autoimmune encephalomyelitis. Avicenna J Phytomed 2017;7:54-65.
|
27. |
Tsai CH, Liu SC, Wang YH, Su CM, Huang CC, Hsu CJ, et al. Osteopontin inhibition of miR-129-3p enhances IL-17 expression and monocyte migration in rheumatoid arthritis. Biochim Biophys Acta Gen Subj 2017;1861:15-22.
|
28. |
Odenthal M, Hee J, Gockel I, Sisic L, Schmitz J, Stoecklein NH, et al. Serum microRNA profiles as prognostic/predictive markers in the multimodality therapy of locally advanced adenocarcinomas of the gastroesophageal junction. Int J Cancer 2015;137:230-7.
|
29. |
Hawley ZC, Campos-Melo D, Strong MJ. MiR-129-5p: A novel therapeutic target for amyotrophic lateral sclerosis? Noncoding RNA Investig 2020;4. doi: 10.21037/ncri-20-5.
|
30. |
Mai J, Virtue A, Male y E, Tran T, Yin Y, Meng S, et al. MicroRNAs and other mechanisms regulate interleukin-17 cytokines and receptors. Front Biosci (Elite Ed) 2012;4:1478-95.
|
31. |
Liu Q, Wu DH, Han L, Deng JW, Zhou L, He R, et al. Roles of microRNAs in psoriasis: Immunological functions and potential biomarkers. Exp Dermatol 2017;26:359-67.
|
32. |
Ma XL, Li SY, Shang F. Effect of microRNA-129-5p targeting HMGB1-RAGE signaling pathway on revascularization in a collagenase-induced intracerebral hemorrhage rat model. Biomed Pharmacother 2017;93:238-44.
|
33. |
Almenar-Pérez E, Sarría L, Nathanson L, Oltra E. Assessing diagnostic value of microRNAs from peripheral blood mononuclear cells and extracellular vesicles in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Sci Rep 2020;10:2064.
|
34. |
Døssing KB, Binderup T, Kaczkowski B, Jacobsen A, Rossing M, Winther O, et al. Down-regulation of miR-129-5p and the let-7 family in neuroendocrine tumors and metastases leads to up-regulation of their targets Egr1, G3bp1, Hmga2 and Bach1. Genes (Basel) 2014;6:1-21.
|
35. |
Liu AH, Wu YT, Wang YP. MicroRNA-129-5p inhibits the development of autoimmune encephalomyelitis-related epilepsy by targeting HMGB1 through the TLR4/NF-kB signaling pathway. Brain Res Bull 2017;132:139-49.
|
36. |
Yuan HL, Wang T, Zhang KH. MicroRNAs as potential biomarkers for diagnosis, therapy and prognosis of gastric cancer. Onco Targets Ther 2018;11:3891-900.
|
37. |
Csépány T. Diagnosis of multiple sclerosis: A review of the 2017 revisions of the McDonald criteria. Ideggyogy Sz 2018;71:321-9.
|
38. |
Tutuncu M, Altintas A, Dogan BV, Uygunoglu U, Kale Icen N, Elmalı Karakaya A, et al. The use of Modified Rio score for determining treatment failure in patients with multiple sclerosis: Retrospective descriptive case series study. Acta Neurol Belg 2020. https://doi.org/10.1007/s13760-020-01476-2
|
39. |
Kacperska MJ, Jastrzebski K, Tomasik B, Walenczak J, Konarska-Krol M, Glabinski A. Selected extracellular microRNA as potential biomarkers of multiple sclerosis activity – Preliminary study. J Mol Neurosci 2015;56:154-63.
|
40. |
Bruno DCF, Donatti A, Martin M, Almeida VS, Geraldis JC, Oliveira FS, et al. Circulating nucleic acids in the plasma and serum as potential biomarkers in neurological disorders. Braz J Med Biol Res 2020;53:e9881.
|
41. |
Ebrahimkhani S, Vafaee F, Young PE, Hur SSJ, Hawke S, Devenney E, et al. Exosomal microRNA signatures in multiple sclerosis reflect disease status. Sci Rep 2017;7:14293.
|
42. |
Huang Q, Xiao B, Ma X, Qu M, Li Y, Nagarkatti P, et al. MicroRNAs associated with the pathogenesis of multiple sclerosis. J Neuroimmunol 2016;295-296:148-61.
|
43. |
Martinez B, Peplow PV. MicroRNAs in blood and cerebrospinal fluid as diagnostic biomarkers of multiple sclerosis and to monitor disease progression. Neural Regen Res 2020;15:606-19. [ PUBMED] [Full text]
|
44. |
Fenoglio C, Ridolfi E, Cantoni C, De Riz M, Bonsi R, Serpente M, et al. Decreased circulating miRNA levels in patients with primary progressive multiple sclerosis. Mult Scler 2013;19:1938-42.
|
45. |
Ysrraelit MC, Correale J. Impact of sex hormones on immune function and multiple sclerosis development. Immunology 2019;156:9-22.
|
46. |
Lasrado N, Jia T, Massilamany C, Franco R, Illes Z, Reddy J. Mechanisms of sex hormones in autoimmunity: Focus on EAE. Biol Sex Differ 2020;11:50.
|
47. |
Musella A, Gentile A, Rizzo FR, De Vito F, Fresegna D, Bullitta S, et al. Interplay between age and neuroinflammation in multiple sclerosis: Effects on motor and cognitive functions. Front Aging Neurosci 2018;10:238.
|
48. |
Feng J, Guo J, Wang JP, Chai BF. MiR-129-5p inhibits proliferation of gastric cancer cells through targeted inhibition on HMGB1 expression. Eur Rev Med Pharmacol Sci 2020;24:3665-73.
|
49. |
Xu S, Yi XM, Zhang ZY, Ge JP, Zhou WQ. miR-129 predicts prognosis and inhibits cell growth in human prostate carcinoma. Mol Med Rep 2016;14:5025-32.
|
50. |
Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, et al. miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis. Cells 2020;9:276. doi:10.3390/cells9020276.
|
51. |
Piket E, Zheleznyakova GY, Kular L, Jagodic M. Small non-coding RNAs as important players, bi omarkers and therapeutic targets in multiple sclerosis: A comprehensive overview. J Autoimmun 2019;101:17-25.
|
52. |
Wang J, Chen J, Sen S. MicroRNA as biomarkers and diagnostics. J Cell Physiol 2016;231:25-30.
|
53. |
Scărlătescu AI, Micheu MM, Popa-Fotea NM, DorobanB;u M. MicroRNAs in acute ST elevation myocardial infarction-A new tool for diagnosis and prognosis: Therapeutic implications. Int J Mol Sci 2021;22:4799. https://doi.org/10.3390/ijms22094799.
|