1. |
Braga D, Madureira AM, Coelho L, Ajith R. Automatic detection of Parkinson's disease based on acoustic analysis of speech. Eng Appl Artif Intell 2019;77:148-58.
|
2. |
Simonet C, Schrag A, Lees AJ, Noyce AJ. The motor prodromes of Parkinson's disease: From bedside observation to large-scale application. J Neurol 2021;268:2099-108.
|
3. |
Eskidere Ö, Ertaş F, Hanilçi C. A comparison of regression methods for remote tracking of Parkinson's disease progression. Ex:pert Syst Appl 2012;39:5523-8.
|
4. |
Pah ND, Motin MA, Kempster P, Kumar DK. Detecting effect of levodopa in Parkinson's disease patients using sustained phonemes. IEEE J Transl Eng Health Med 2021; 9:1-9.
|
5. |
Azadi H, Akbarzadeh-T MR, Kobravi HR, Shoeibi A. Robust Voice Feature Selection Using Interval Type-2 Fuzzy AHP for Automated Diagnosis of Parkinson's Disease. IEEE/ACM Transactions on Audio, Speech, and Language Processing. 2021 Jul 14.; 29:2792-2802. [doi: 10.1109/TASLP. 2021.3097215].
|
6. |
Rana B, Juneja A, Saxena M, Gudwani S, Kumaran SS, Behari M, et al. Relevant 3D local binary pattern based features from fused feature descriptor for differential diagnosis of Parkinson's disease using structural MRI. Biomed Signal Process Control 2017;34:134-43.
|
7. |
Azadi H, Zade MA, Toutounchi MR, Kobravi HR, Talab FR, Bagherzade SA, et al. Optimal feature selection and comparison for automatic detection of Parkinson's disease using speech signal. Iran J Biomed Eng 2016;10:41-7.
|
8. |
Hariharan M, Polat K, Sindhu R. A new hybrid intelligent system for accurate detection of Parkinson's disease. Comput Methods Programs Biomed 2014;113:904-13.
|
9. |
Cernak M, Orozco-Arroyave JR, Rudzicz F, Christensen H, Vásquez-Correa JC, Nöth E. Characterisation of voice quality of Parkinson's disease using differential phonological posterior features. Comput Speech Lang 2017;46:196-208.
|
10. |
Despotovic V, Skovranek T, Schommer C. Speech based estimation of Parkinson's disease using gaussian processes and automatic relevance determination. Neurocomputing 2020;401:173-81.
|
11. |
Ho AK, Iansek R, Marigliani C, Bradshaw JL, Gates S. Speech impairment in a large sample of patients with Parkinson's disease. Behav Neurol 1998;11:131-7.
|
12. |
Moro-Velazquez L, Gómez-García JA, Godino-Llorente JI, Villalba J, Orozco-Arroyave JR, Dehak N. Analysis of speaker recognition methodologies and the influence of kinetic changes to automatically detect Parkinson's disease. Appl Soft Comput 2018;62:649-66.
|
13. |
Ackermann H, Ziegler W. Die dysarthrophonie des Parkinson-syndroms. [The dysarthrophonia of Parkinson's disease]. Fortschr Neurol Psychiatr 1989;57:149-60.
|
14. |
|
15. |
Palacios-Alonso D, Meléndez-Morales G, López-Arribas A, Lázaro-Carrascosa C, Gómez-Rodellar A, Gómez-Vilda P. MonParLoc: A speech-based system for Parkinson's disease analysis and monitoring. IEEE Access 2020;8:188243-55.
|
16. |
Tsanas A, Little MA, McSharry PE, Spielman J, Ramig LO. Novel speech signal processing algorithms for high-accuracy classification of Parkinson's disease. IEEE Trans Biomed Eng 2012;59:1264-71.
|
17. |
Tetrud JW. Preclinical Parkinson's disease: Detection of motor and nonmotor manifestations. Neurology 1991;41:69-71.
|
18. |
Gürüler H. A novel diagnosis system for Parkinson's disease using complex-valued artificial neural network with k-means clustering feature weighting method. Neural Comput Appl 2017;28:1657-66.
|
19. |
Sakar BE, Serbes G, Sakar CO. Analyzing the effectiveness of vocal features in early telediagnosis of Parkinson's disease. PLoS One 2017;12:e0182428.
|
20. |
Little MA, McSharry PE, Hunter EJ, Spielman J, Ramig LO. Suitability of dysphonia measurements for telemonitoring of Parkinson's disease. IEEE Trans Biomed Eng 2009;56:1015.
|
21. |
Sakar BE, Isenkul ME, Sakar CO, Sertbas A, Gurgen F, Delil S, et al. Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings. IEEE J Biomed Health Inform 2013;17:828-34.
|
22. |
Ali L, Zhu C, Zhang Z, Liu Y. Automated detection of Parkinson's disease based on multiple types of sustained phonations using linear discriminant analysis and genetically optimized Neural network. IEEE J Transl Eng Health Med 2019;7:1-10.
|
23. |
Benmalek E, Elmhamdi J, Jilbab A. Multiclass classification of Parkinson's disease using different classifiers and LLBFS feature selection algorithm. Int J Speech Technol 2017;20:179-84.
|
24. |
Forrest K, Weismer G, Turner GS. Kinematic, acoustic, and perceptual analyses of connected speech produced by parkinsonian and normal geriatric adults. J Acoust Soc Am 1989;85:2608-22.
|
25. |
Moran RJ, Reilly RB, de Chazal P, Lacy PD. Telephony-based voice pathology assessment using automated speech analysis. IEEE Trans Biomed Eng 2006;53:468-77.
|
26. |
Attuluri N, Pushpavathi M, Pandey P, Mahapatra S. Voice perturbations in repaired cleft lip and palate. Global J Otolaryngol 2017;8 (1).;8:555729.
|
27. |
Teixeira JP, Oliveira C, Lopes C. Vocal acoustic analysis–jitter, shimmer and hnr parameters. Procedia Technol 201;9:1112-22.
|
28. |
Teixeira JP, Gonçalves A. Accuracy of jitter and shimmer measurements. Procedia Technol 2014;16:1190-9.
|
29. |
McNeil MR, Ballard KJ, Duffy JR, Wambaugh JU, van Lieshout P, Maassen B, Terband H. Apraxia of speech theory, assessment, differential diagnosis, and treatment: Past, present, and future. Speech motor control in normal and disordered speech: Future developments in theory and methodology. 2017:195-221.
|
30. |
Baken RJ, Orlikoff RF. Clinical Measurement of Speech and Voice. Cengage Learning is in Boston, MA, USA: Cengage Learning; 1999.
|
31. |
Kira K, Rendell LA. A practical approach to feature selection. In: Machine Learning Proceedings. Publisher is in San Francisco, CA, USA: Morgan Kaufmann 1992. p. 249-56.
|
32. |
Kononenko I. Estimating attributes: Analysis and extensions of RELIEF. In: European Conference on Machine Learning. Berlin, Heidelberg: Springer; 1994. p. 171-82.
|
33. |
Vapnik V. The Nature of Statistical Learning Theory. Springer Science and Business Media; 2013.
|
34. |
Wroge TJ, Özkanca Y, Demiroglu C, Si D, Atkins DC, Ghomi RH. Parkinson's disease diagnosis using machine learning and voice. In: 2018 IEEE Signal Processing in Medicine and Biology Symposium (SPMB). Philadelphia, PA, USA. IEEE; 2018. p. 1-7.
|
35. |
Suykens JA, Vandewalle J. Least squares support vector machine classifiers. Neural Process Lett 1999;9:293-300.
|
36. |
Gunduz H. Deep learning-based Parkinson's disease classification using vocal feature sets. IEEE Access 2019;7:115540-51.
|
37. |
Kuresan H, Masunda S, Samiappan D. Analysis of Jitter and Shimmer for Parkinson's disease diagnosis using telehealth. In: Cognitive Informatics and Soft Computing. Singapore: Springer; 2019. p. 711-21.
|
38. |
Hand DJ. The elements of statistical learning: Data mining, inference, and prediction. Biometrics 2002;58:252.
|