1. |
Fischer B, Jones W, Urbanoski K, Skinner R, Rehm J. Correlations between prescription opioid analgesic dispensing levels and related mortality and morbidity in Ontario, Canada, 2005-2011. Drug Alcohol Rev 2014;33:19-26.
|
2. |
Listos J, Łupina M, Talarek S, Mazur A, Orzelska-Górka J, Kotlińska J. The mechanisms involved in morphine addiction: An overview. Int J Mol Sci 2019;20:4302.
|
3. |
Kumar K, Kelly M, Pirlot T. Continuous intrathecal morphine treatment for chronic pain of nonmalignant etiology: Long-term benefits and efficacy. Surg Neurol 2001;55:79-86.
|
4. |
LeResche L, Saunders K, Dublin S, Thielke S, Merrill JO, Shortreed SM, et al. Sex and age differences in global pain status among patients using opioids long term for chronic noncancer pain. J Womens Health (Larchmt) 2015;24:629-35.
|
5. |
Powledge TM. Addiction and the brain: The dopamine pathway is helping researchers find their way through the addiction maze. BioScience 1999;49:513-9.
|
6. |
Ayano G. Dopamine: Receptors, functions, synthesis, pathways, locations and mental disorders: Review of literatures. J Ment Disord Treat 2016;2:2.
|
7. |
Wassum KM, Izquierdo A. The basolateral amygdala in reward learning and addiction. Neurosci Biobehav Rev 2015;57:271-83.
|
8. |
Babaev O, Piletti Chatain C, Krueger-Burg D. Inhibition in the amygdala anxiety circuitry. Exp Mol Med 2018;50:1-16.
|
9. |
Hiroi N, White NM. The lateral nucleus of the amygdala mediates expression of the amphetamine-produced conditioned place preference. J Neurosci 1991;11:2107-16.
|
10. |
Hatfield T, Han JS, Conley M, Gallagher M, Holland P. Neurotoxic lesions of basolateral, but not central, amygdala interfere with pavlovian second-order conditioning and reinforcer devaluation effects. J Neurosci 1996;16:5256-65.
|
11. |
Cai YQ, Wang W, Paulucci-Holthauzen A, Pan ZZ. Brain circuits mediating opposing effects on emotion and pain. J Neurosci 2018;38:6340-9.
|
12. |
Ambroggi F, Ishikawa A, Fields HL, Nicola SM. Basolateral amygdala neurons facilitate reward-seeking behavior by exciting nucleus accumbens neurons. Neuron 2008;59:648-61.
|
13. |
Britt JP, Benaliouad F, McDevitt RA, Stuber GD, Wise RA, Bonci A. Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron 2012;76:790-803.
|
14. |
Speranza L, di Porzio U, Viggiano D, de Donato A, Volpicelli F. Dopamine: The neuromodulator of long-term synaptic plasticity, reward and movement control. Cells 2021;10:735.
|
15. |
Yang H, de Jong JW, Tak Y, Peck J, Bateup HS, Lammel S. Nucleus accumbens subnuclei regulate motivated behavior via direct inhibition and disinhibition of VTA dopamine subpopulations. Neuron 2018;97:434-49.e4.
|
16. |
Dearry A, Gingrich JA, Falardeau P, Fremeau RT, Bates MD, Caron MG. Molecular cloning and expression of the gene for a human D 1 dopamine receptor. Nature 1990;347:72-6.
|
17. |
Grandy DK, Zhang YA, Bouvier C, Zhou QY, Johnson RA, Allen L, et al. Multiple human D5 dopamine receptor genes: A functional receptor and two pseudogenes. Proc Natl Acad Sci U S A 1991;88:9175-9.
|
18. |
Bonifazi A, Yano H, Guerrero AM, Kumar V, Hoffman AF, Lupica CR, et al. Novel and potent dopamine D 2 receptor go-protein biased agonists. ACS Pharmacol Transl Sci 2019;2:52-65.
|
19. |
Guitart X, Moreno E, Rea W, Sánchez-Soto M, Cai NS, Quiroz C, et al. Biased G protein-independent signaling of dopamine D 1-D 3 receptor heteromers in the nucleus accumbens. Mol Neurobiol 2019;56:6756-69.
|
20. |
Van Tol HH, Bunzow JR, Guan HC, Sunahara RK, Seeman P, Niznik HB, et al. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 1991;350:610-4.
|
21. |
Tritsch NX, Sabatini BL. Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron 2012;76:33-50.
|
22. |
Baker DA, Fuchs RA, Specio SE, Khroyan TV, Neisewander JL. Effects of intraaccumbens administration of SCH-23390 on cocaine-induced locomotion and conditioned place preference. Synapse 1998;30:181-93.
|
23. |
Zarrindast MR, Rezayof A, Sahraei H, Haeri-Rohani A, Rassouli Y. Involvement of dopamine D1 receptors of the central amygdala on the acquisition and expression of morphine-induced place preference in rat. Brain Res 2003;965:212-21.
|
24. |
Rezayof A, Zarrindast MR, Sahraei H, Haeri-Rohani A. Involvement of dopamine receptors of the dorsal hippocampus on the acquisition and expression of morphine-induced place preference in rats. J Psychopharmacol 2003;17:415-23.
|
25. |
Shippenberg TS, Bals-Kubik R, Huber A, Herz A. Neuroanatomical substrates mediating the aversive effects of D-1 dopamine receptor antagonists. Psychopharmacology (Berl) 1991;103:209-14.
|
26. |
Esmaeili MH, Kermani M, Parvishan A, Haghparast A. Role of D1/D2 dopamine receptors in the CA1 region of the rat hippocampus in the rewarding effects of morphine administered into the ventral tegmental area. Behav Brain Res 2012;231:111-5.
|
27. |
Assar N, Mahmoudi D, Farhoudian A, Farhadi MH, Fatahi Z, Haghparast A. D1- and D2-like dopamine receptors in the CA1 region of the hippocampus are involved in the acquisition and reinstatement of morphine-induced conditioned place preference. Behav Brain Res 2016;312:394-404.
|
28. |
Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates: Fifth ed. San Diego: Academic Press; 2005; 46-61.
|
29. |
Haghparast A, Esmaeili MH, Taslimi Z, Kermani M, Yazdi-Ravandi S, Alizadeh AM. Intrahippocampal administration of D2 but not D1 dopamine receptor antagonist suppresses the expression of conditioned place preference induced by morphine in the ventral tegmental area. Neurosci Lett 2013;541:138-43.
|
30. |
Moaddab M, Haghparast A, Hassanpour-Ezatti M. Effects of reversible inactivation of the ventral tegmental area on the acquisition and expression of morphine-induced conditioned place preference in the rat. Behav Brain Res 2009;198:466-71.
|
31. |
Bariselli S, Glangetas C, Tzanoulinou S, Bellone C. Ventral tegmental area subcircuits process rewarding and aversive experiences. J Neurochem 2016;139:1071-80.
|
32. |
Lintas A, Chi N, Lauzon NM, Bishop SF, Gholizadeh S, Sun N, et al. Identification of a dopamine receptor-mediated opiate reward memory switch in the basolateral amygdala-nucleus accumbens circuit. J Neurosci 2011;31:11172-83.
|
33. |
Rosenkranz JA, Grace AA. Modulation of basolateral amygdala neuronal firing and afferent drive by dopamine receptor activation in vivo. J Neurosci 1999;19:11027-39.
|
34. |
McDonald RJ, White NM. A triple dissociation of memory systems: Hippocampus, amygdala, and dorsal striatum. Behav Neurosci 1993;107:3-22.
|
35. |
Gallagher M, Graham PW, Holland PC. The amygdala central nucleus and appetitive Pavlovian conditioning: Lesions impair one class of conditioned behavior. J Neurosci 1990;10:1906-11.
|
36. |
Mogenson GJ, Jones DL, Yim CY. From motivation to action: Functional interface between the limbic system and the motor system. Prog Neurobiol 1980;14:69-97.
|
37. |
Cuomo V, Cagiano R, Colonna M, Renna G, Racagni G. Influence of SCH 23390, a DA1-receptor antagonist, on the behavioural responsiveness to small and large doses of apomorphine in rats. Neuropharmacology 1986;25:1297-300.
|
38. |
Carlsson A. On the neuronal circuitries and neurotransmitters involved in the control of locomotor activity. J Neural Transm Suppl 1993;40:1-12.
|
39. |
Pettersson I, Gundertofte K, Palm J, Liljefors T. A study on the contribution of the 1-phenyl substituent to the molecular electrostatic potentials of some benzazepines in relation to selective dopamine D-1 receptor activity. J Med Chem 1992;35:502-7.
|
40. |
Tobin S, Sedki F, Abbas Z, Shalev U. Antagonism of the dopamine D1-like receptor in mesocorticolimbic nuclei attenuates acute food deprivation-induced reinstatement of heroin seeking in rats. Eur J Neurosci 2013;37:972-81.
|
41. |
Andrzejewski ME, Spencer R, Kelley A. Instrumental learning, but not performance, requires dopamine D1-receptor activation in the amygdala. Neuroscience 2005;135:335-45.
|
42. |
Young EA, Dreumont SE, Cunningham CL. Role of nucleus accumbens dopamine receptor subtypes in the learning and expression of alcohol-seeking behavior. Neurobiol Learn Mem 2014;108:28-37.
|
43. |
Gao J, Li Y, Zhu N, Brimijoin S, Sui N. Roles of dopaminergic innervation of nucleus accumbens shell and dorsolateral caudate-putamen in cue-induced morphine seeking after prolonged abstinence and the underlying D1- and D2-like receptor mechanisms in rats. J Psychopharmacol 2013;27:181-91.
|
44. |
Hiroi N, White NM. The amphetamine conditioned place preference: Differential involvement of dopamine receptor subtypes and two dopaminergic terminal areas. Brain Res 1991;552:141-52.
|
45. |
Khroyan TV, Barrett-Larimore RL, Rowlett JK, Spealman RD. Dopamine D1- and D2-like receptor mechanisms in relapse to cocaine-seeking behavior: Effects of selective antagonists and agonists. J Pharmacol Exp Ther 2000;294:680-7.
|
46. |
Khroyan TV, Platt DM, Rowlett JK, Spealman RD. Attenuation of relapse to cocaine seeking by dopamine D1 receptor agonists and antagonists in non-human primates. Psychopharmacology (Berl) 2003;168:124-31.
|
47. |
Adams JU, Careri JM, Efferen TR, Rotrosen J. Differential effects of dopamine antagonists on locomotor activity, conditioned activity and conditioned place preference induced by cocaine in rats. Behav Pharmacol 2001;12:603-11.
|
48. |
Shimosato K, Ohkuma S. Simultaneous monitoring of conditioned place preference and locomotor sensitization following repeated administration of cocaine and methamphetamine. Pharmacol Biochem Behav 2000;66:285-92.
|
49. |
Mucha RF, Volkovskis C, Kalant H. Conditioned increases in locomotor activity produced with morphine as an unconditioned stimulus, and the relation of conditioning to acute morphine effect and tolerance. J Comp Physiol Psychol 1981;95:351-62.
|
50. |
O'Neill MF, Shaw G. Comparison of dopamine receptor antagonists on hyperlocomotion induced by cocaine, amphetamine, MK-801 and the dopamine D1 agonist C-APB in mice. Psychopharmacology (Berl) 1999;145:237-50.
|
51. |
Waelti P, Dickinson A, Schultz W. Dopamine responses comply with basic assumptions of formal learning theory. Nature 2001;412:43-8.
|
52. |
Everitt BJ, Wolf ME. Psychomotor stimulant addiction: A neural systems perspective. J Neurosci 2002;22:3312-20.
|
53. |
Finch DM. Neurophysiology of converging synaptic inputs from the rat prefrontal cortex, amygdala, midline thalamus, and hippocampal formation onto single neurons of the caudate/putamen and nucleus accumbens. Hippocampus 1996;6:495-512.
|
54. |
Floresco SB, Blaha CD, Yang CR, Phillips AG. Dopamine D1 and NMDA receptors mediate potentiation of basolateral amygdala-evoked firing of nucleus accumbens neurons. J Neurosci 2001;21:6370-6.
|