Supplementation of carvacrol attenuates hippocampal tumor necrosis factor-alpha level, oxidative stress, and learning and memory dysfunction in lipopolysaccharide-exposed rats

Document Type : Original Article

Authors

1 Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

2 Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

Abstract

Background: Carvacrol is a natural phenolic monoterpene with anti-inflammatory and antioxidant bioactivities. Neuroinflammatory and oxidative stress responses play a crucial role in the pathogenesis of Alzheimer's disease. The present study examined the effect of carvacrol on brain tumor necrosis factor-alpha (TNF-α) level and oxidative stress as well as spatial learning and memory performances in lipopolysaccharide (LPS)-exposed rats. Materials and Methods: The rats were treated with either carvacrol (25 and 50 mg/kg) or Tween 80 for 2 weeks. Thereafter, LPS (1 mg/kg) or saline was intraperitoneally administered on days 15–19, 2 h before Morris water maze task, and treatments with carvacrol or Tween 80 were performed 30 min prior to behavioral testing. The level of TNF-α, lipid peroxidation, and total thiol concentration were measured in the hippocampus and cerebral cortex at the end of the experiment. Results: It was found that LPS-exposed rats exhibited spatial learning and memory dysfunction, which was accompanied by increased TNF-α level and lipid peroxidation, and decreased total thiol concentration in the hippocampus and/or cortex. Moreover, treatment with carvacrol at a dose of 25 mg/kg attenuated learning and memory impairments, decreased TNF-α and lipid peroxidation level in the hippocampus and cortex, and increased total thiol concentration in the cortex. Conclusion: Carvacrol exerts neuroprotective effects against LPS-induced spatial memory deficits through attenuating hippocampal TNF-α level and oxidative stress in rats.

Keywords

1.
Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer's disease. Alzheimers Dement 2007;3:186-91.  Back to cited text no. 1
    
2.
Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here? Nat Rev Neurol 2021;17:157-72.  Back to cited text no. 2
    
3.
Dementia. WHO Newsletter; 21 September 2020.  Back to cited text no. 3
    
4.
DeLegge MH, Smoke A. Neurodegeneration and inflammation. Nutr Clin Pract 2008;23:35-41.  Back to cited text no. 4
    
5.
Caruso G, Spampinato SF, Cardaci V, Caraci F, Sortino MA, Merlo S. βeta-amyloid and oxidative Stress: Perspectives in drug development. Curr Pharm Des 2019;25:4771-81.  Back to cited text no. 5
    
6.
Dursun E, Gezen-Ak D, Hanagasi H, Bilgic B, Lohmann E, Ertan S, et al. The interleukin 1 alpha, interleukin 1 beta, interleukin 6 and alpha-2-macroglobulin serum levels in patients with early or late onset Alzheimer's disease, mild cognitive impairment or Parkinson's disease. J Neuroimmunol 2015;283:50-7.  Back to cited text no. 6
    
7.
Lyman M, Lloyd DG, Ji X, Vizcaychipi MP, Ma D. Neuroinflammation: The role and consequences. Neurosci Res 2014;79:1-12.  Back to cited text no. 7
    
8.
Brown GC. The endotoxin hypothesis of neurodegeneration. J Neuroinflammation 2019;16:180.  Back to cited text no. 8
    
9.
Café-Mendes CC, Garay-Malpartida HM, Malta MB, de Sá Lima L, Scavone C, Ferreira ZS. Chronic nicotine treatment decreases LPS signaling through NF-κB and TLR-4 modulation in the hippocampus. Neurosci Lett 2017;636:218-24.  Back to cited text no. 9
    
10.
Zhou YL, Yan YM, Li SY, He DH, Xiong S, Wei SF, et al. 6-O-angeloylplenolin exerts neuroprotection against lipopolysaccharide-induced neuroinflammation in vitro and in vivo. Acta Pharmacol Sin 2020;41:10-21.  Back to cited text no. 10
    
11.
Bai K, Xu W, Zhang J, Kou T, Niu Y, Wan X, et al. Assessment of free radical scavenging activity of dimethylglycine sodium salt and its role in providing protection against lipopolysaccharide-induced oxidative stress in mice. PLoS One 2016;11:e0155393.  Back to cited text no. 11
    
12.
Adetuyi BO, Farombi EO. 6-Gingerol, an active constituent of ginger, attenuates lipopolysaccharide-induced oxidation, inflammation, cognitive deficits, neuroplasticity, and amyloidogenesis in rat. J Food Biochem 2021;45:e13660.  Back to cited text no. 12
    
13.
Khan S, Ahmad K, Alshammari EM, Adnan M, Baig MH, Lohani M, et al. Implication of caspase-3 as a common therapeutic target for multineurodegenerative disorders and its inhibition using nonpeptidyl natural compounds. Biomed Res Int 2015;2015:379817.  Back to cited text no. 13
    
14.
Sawikr Y, Yarla NS, Peluso I, Kamal MA, Aliev G, Bishayee A. Neuroinflammation in Alzheimer's disease: The preventive and therapeutic potential of polyphenolic nutraceuticals. Adv Protein Chem Struct Biol 2017;108:33-57.  Back to cited text no. 14
    
15.
Amraie E, Pouraboli I, Rajaei Z. Neuroprotective effects of Levisticum officinale on LPS-induced spatial learning and memory impairments through neurotrophic, anti-inflammatory, and antioxidant properties. Food Funct 2020;11:6608-21.  Back to cited text no. 15
    
16.
Hong DK, Choi BY, Kho AR, Lee SH, Jeong JH, Kang BS, et al. Carvacrol attenuates hippocampal neuronal death after global cerebral ischemia via inhibition of transient receptor potential melastatin 7. Cells 2018;7:E231.  Back to cited text no. 16
    
17.
Li WT, Zhang SY, Zhou YF, Zhang BF, Liang ZQ, Liu YH, et al. Carvacrol attenuates traumatic neuronal injury through store-operated Ca2+entry-independent regulation of intracellular Ca2+homeostasis. Neurochem Int 2015;90:107-13.  Back to cited text no. 17
    
18.
Khalil A, Kovac S, Morris G, Walker MC. Carvacrol after status epilepticus (SE) prevents recurrent SE, early seizures, cell death, and cognitive decline. Epilepsia 2017;58:263-73.  Back to cited text no. 18
    
19.
Wang P, Luo Q, Qiao H, Ding H, Cao Y, Yu J, et al. The neuroprotective effects of carvacrol on ethanol-induced hippocampal neurons impairment via the antioxidative and antiapoptotic pathways. Oxid Med Cell Longev 2017;2017:4079425.  Back to cited text no. 19
    
20.
Li Z, Hua C, Pan X, Fu X, Wu W. Carvacrol exerts neuroprotective effects via suppression of the inflammatory response in middle cerebral artery occlusion rats. Inflammation 2016;39:1566-72.  Back to cited text no. 20
    
21.
Yazici A, Marinelli L, Cacciatore I, Emsen B, Eusepi P, Di Biase G, et al. Potential anticancer effect of carvacrol codrugs on human glioblastoma cells. Curr Drug Deliv 2021;18:350-6.  Back to cited text no. 21
    
22.
Azizi Z, Salimi M, Amanzadeh A, Majlessi N, Naghdi N. Carvacrol and thymol attenuate cytotoxicity induced by amyloid β25-35 via activating protein kinase C and inhibiting oxidative stress in PC12 cells. Iran Biomed J 2020;24:243-50.  Back to cited text no. 22
    
23.
Jukic M, Politeo O, Maksimovic M, Milos M, Milos M. In vitro acetylcholinesterase inhibitory properties of thymol, carvacrol and their derivatives thymoquinone and thymohydroquinone. Phytother Res 2007;21:259-61.  Back to cited text no. 23
    
24.
Gholami M, Rajaei Z, Malek M. Effects of carvacrol on spatial learning performances, hippocampal interleukin-1ß level and oxidative stress markers in lipopolysaccharide-treated rats. Physiol Pharmacol 2019;23:286-95.  Back to cited text no. 24
    
25.
Deng W, Lu H, Teng J. Carvacrol attenuates diabetes-associated cognitive deficits in rats. J Mol Neurosci 2013;51:813-9.  Back to cited text no. 25
    
26.
Ammari M, Othman H, Hajri A, Sakly M, Abdelmelek H. Pistacia lentiscus oil attenuates memory dysfunction and decreases levels of biomarkers of oxidative stress induced by lipopolysaccharide in rats. Brain Res Bull 2018;140:140-7.  Back to cited text no. 26
    
27.
Vorhees CV, Williams MT. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nat Protoc 2006;1:848-58.  Back to cited text no. 27
    
28.
Ahmadi M, Rajaei Z, Hadjzadeh MA, Nemati H, Hosseini M. Crocin improves spatial learning and memory deficits in the Morris water maze via attenuating cortical oxidative damage in diabetic rats. Neurosci Lett 2017;642:1-6.  Back to cited text no. 28
    
29.
Rajaei Z, Hadjzadeh MA, Nemati H, Hosseini M, Ahmadi M, Shafiee S. Antihyperglycemic and antioxidant activity of crocin in streptozotocin-induced diabetic rats. J Med Food 2013;16:206-10.  Back to cited text no. 29
    
30.
Nazem A, Sankowski R, Bacher M, Al-Abed Y. Rodent models of neuroinflammation for Alzheimer's disease. J Neuroinflammation 2015;12:74.  Back to cited text no. 30
    
31.
Carret-Rebillat AS, Pace C, Gourmaud S, Ravasi L, Montagne-Stora S, Longueville S, et al. Neuroinflammation and Aβ accumulation linked to systemic inflammation are decreased by genetic PKR down-regulation. Sci Rep 2015;5:8489.  Back to cited text no. 31
    
32.
Gaikwad S, Naveen C, Agrawal-Rajput R. Toll-like receptor-4 antagonism mediates benefits during neuroinflammation. Neural Regen Res 2016;11:552-3.  Back to cited text no. 32
[PUBMED]  [Full text]  
33.
Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 2009;1:a001651.  Back to cited text no. 33
    
34.
Cunningham C. Microglia and neurodegeneration: The role of systemic inflammation. Glia 2013;61:71-90.  Back to cited text no. 34
    
35.
Zhu W, Cao FS, Feng J, Chen HW, Wan JR, Lu Q, et al. NLRP3 inflammasome activation contributes to long-term behavioral alterations in mice injected with lipopolysaccharide. Neuroscience 2017;343:77-84.  Back to cited text no. 35
    
36.
Zheng C, Zhou XW, Wang JZ. The dual roles of cytokines in Alzheimer's disease: Update on interleukins, TNF-α, TGF-β and IFN-γ. Transl Neurodegener 2016;5:7.  Back to cited text no. 36
    
37.
Fiore M, Angelucci F, Alleva E, Branchi I, Probert L, Aloe L. Learning performances, brain NGF distribution and NPY levels in transgenic mice expressing TNF-alpha. Behav Brain Res 2000;112:165-75.  Back to cited text no. 37
    
38.
Belarbi K, Jopson T, Tweedie D, Arellano C, Luo W, Greig NH, et al. TNF-alpha protein synthesis inhibitor restores neuronal function and reverses cognitive deficits induced by chronic neuroinflammation. J Neuroinflamm 2012;9:23.  Back to cited text no. 38
    
39.
Somensi N, Rabelo TK, Guimarães AG, Quintans-Junior LJ, de Souza Araújo AA, Moreira JC, et al. Carvacrol suppresses LPS-induced pro-inflammatory activation in RAW 264.7 macrophages through ERK1/2 and NF-kB pathway. Int Immunopharmacol 2019;75:105743.  Back to cited text no. 39
    
40.
Lee B, Yeom M, Shim I, Lee H, Hahm DH. Inhibitory effect of carvacrol on lipopolysaccharide-induced memory impairment in rats. Korean J Physiol Pharmacol 2020;24:27-37.  Back to cited text no. 40
    
41.
Hakimi Z, Salmani H, Marefati N, Arab Z, Gholamnezhad Z, Beheshti F, et al. Protective effects of carvacrol on brain tissue inflammation and oxidative stress as well as learning and memory in lipopolysaccharide-challenged rats. Neurotox Res 2020;37:965-76.  Back to cited text no. 41
    
42.
Moreira PI, Santos MS, Oliveira CR, Shenk JC, Nunomura A, Smith MA, et al. Alzheimer disease and the role of free radicals in the pathogenesis of the disease. CNS Neurol Disord Drug Targets 2008;7:3-10.  Back to cited text no. 42
    
43.
Baranauskaite J, Sadauskiene I, Liekis A, Kasauskas A, Lazauskas R, Zlabiene U, et al. Natural compounds rosmarinic acid and carvacrol counteract aluminium-induced oxidative stress. Molecules 2020;25:E1807.  Back to cited text no. 43
    
44.
Naeem K, Tariq Al Kury L, Nasar F, Alattar A, Alshaman R, Shah FA, et al. Natural dietary supplement, carvacrol, alleviates LPS-induced oxidative stress, neurodegeneration, and depressive-like behaviors via the Nrf2/HO-1 pathway. J Inflamm Res 2021;14:1313-29.  Back to cited text no. 44
    
45.
Haddadi H, Rajaei Z, Alaei H, Shahidani S. Chronic treatment with carvacrol improves passive avoidance memory in a rat model of Parkinson's disease. Arq Neuropsiquiatr 2018;76:71-7.  Back to cited text no. 45
    
46.
Martin KR, Appel CL. Polyphenols as dietary supplements: A double-edged sword. Nutr Diet Suppl 2010;2:1-12.  Back to cited text no. 46
    
47.
Tyagi E, Agrawal R, Nath C, Shukla R. Effect of melatonin on neuroinflammation and acetylcholinesterase activity induced by LPS in rat brain. Eur J Pharmacol 2010;640:206-10.  Back to cited text no. 47
    
48.
Houdek HM, Larson J, Watt JA, Rosenberger TA. Bacterial lipopolysaccharide induces a dose-dependent activation of neuroglia and loss of basal forebrain cholinergic cells in the rat brain. Inflamm Cell Signal 2014;1:e47.  Back to cited text no. 48
    
49.
Azizi Z, Ebrahimi S, Saadatfar E, Kamalinejad M, Majlessi N. Cognitive-enhancing activity of thymol and carvacrol in two rat models of dementia. Behav Pharmacol 2012;23:241-9.  Back to cited text no. 49