The therapeutic effects of magnesium in insulin secretion and insulin resistance


Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran


Insulin resistance (IR) is a chronic pathological condition that is related to reduce the rates of glucose uptake, especially in the liver, muscle, and adipose tissue as target tissues. Metabolic syndrome and type 2 diabetes mellitus can occur following progression of the disease. The majority of prior research has applied that some cations such as magnesium (Mg2+) have important physiological role in insulin metabolism. Mg2+ is the fourth most abundant mineral in the human body that gets involved as a cofactor of various enzymes in several metabolic events, such as carbohydrate oxidation, and it has a fundamental role in glucose transporting mechanism of the cell membrane. This cation has numerous duties in the human body such as regulation of insulin secretion in pancreatic beta-cells and phosphorylation of the insulin receptors in target cells and also gets involved in other downstream signal kinases as intracellular cation. On this basis, intracellular Mg2+ balancing is vital for adequate carbohydrate metabolism. This paper summarizes the present knowledge about the therapeutic effects of Mg2+ in reducing IR in liver, muscle, and pancreases with different mechanisms. For this, the search was performed in Google Scholar, PubMed, Scopus, and Web of Science by insulin resistance, skeletal muscle, liver, pancreases, magnesium, Mg2+, and inflammation keywords.


Kostov K. Effects of magnesium deficiency on mechanisms of insulin resistance in type 2 diabetes: Focusing on the processes of insulin secretion and signaling. Int J Mol Sci 2019;20:1351.  Back to cited text no. 1
Morakinyo AO, Samuel TA, Adekunbi DA. Magnesium upregulates insulin receptor and glucose transporter-4 in streptozotocin-nicotinamide-induced type-2 diabetic rats. Endocr Regul 2018;52:6-16.  Back to cited text no. 2
Rezazadeh H, Sharifi MR, Sharifi M, Soltani N. Magnesium sulfate improves insulin resistance in high fat diet induced diabetic parents and their offspring. Eur J Pharmacol 2021;909:174418.  Back to cited text no. 3
Chutia H, Lynrah KG. Association of serum magnesium deficiency with insulin resistance in type 2 diabetes mellitus. J Lab Physicians 2015;7:75-8.  Back to cited text no. 4
[PUBMED]  [Full text]  
Morais JB, Severo JS, de Alencar GR, de Oliveira AR, Cruz KJ, Marreiro DD, et al. Effect of magnesium supplementation on insulin resistance in humans: A systematic review. Nutrition 2017;38:54-60.  Back to cited text no. 5
Günther T. The biochemical function of Mg2+ in insulin secretion, insulin signal transduction and insulin resistance. Magnes Res 2010;23:5-18.  Back to cited text no. 6
Samuel VT, Shulman GI. The pathogenesis of insulin resistance: Integrating signaling pathways and substrate flux. J Clin Invest 2016;126:12-22.  Back to cited text no. 7
Fapohunda O, Balogun O. Oral magnesium supplementation modulates hepatic and intestinal expression of some carbohydrate metabolizing genes in type 2 diabetic rats. Int J Mol Biol Open Access 2019;4:189-94.  Back to cited text no. 8
Tan SY, Mei Wong JL, Sim YJ, Wong SS, Mohamed Elhassan SA, Tan SH, et al. Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention. Diabetes Metab Syndr 2019;13:364-72.  Back to cited text no. 9
ELDerawi WA, Naser IA, Taleb MH, Abutair AS. The effects of oral magnesium supplementation on glycemic response among type 2 diabetes patients. Nutrients 2018;11:E44.  Back to cited text no. 10
Gommers LM, Hoenderop JG, Bindels RJ, de Baaij JH. Hypomagnesemia in type 2 diabetes: A vicious circle? Diabetes 2016;65:3-13.  Back to cited text no. 11
Giri B, Dey S, Das T, Sarkar M, Banerjee J, Dash SK. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity. Biomed Pharmacother 2018;107:306-28.  Back to cited text no. 12
Sohrabipour S, Sharifi MR, Sharifi M, Talebi A, Soltani N. Effect of magnesium sulfate administration to improve insulin resistance in type 2 diabetes animal model: Using the hyperinsulinemic-euglycemic clamp technique. Fundam Clin Pharmacol 2018;32:603-16.  Back to cited text no. 13
Fang X, Liang C, Li M, Montgomery S, Fall K, Aaseth J, et al. Dose-response relationship between dietary magnesium intake and cardiovascular mortality: A systematic review and dose-based meta-regression analysis of prospective studies. J Trace Elem Med Biol 2016;38:64-73.  Back to cited text no. 14
Thomas AE, Inagadapa PJ, Jeyapal S, Merugu NM, Kalashikam RR, Manchala R. Maternal magnesium restriction elevates glucocorticoid stress and inflammation in the placenta and fetus of WNIN rat dams. Biol Trace Elem Res 2018;181:281-7.  Back to cited text no. 15
Schutten JC, Joosten MM, de Borst MH, Bakker SJ. Magnesium and blood pressure: A physiology-based approach. Adv Chronic Kidney Dis 2018;25:244-50.  Back to cited text no. 16
Alghobashy AA, Alkholy UM, Talat MA, Abdalmonem N, Zaki A, Ahmed IA, et al. Trace elements and oxidative stress in children with type 1 diabetes mellitus. Diabetes Metab Syndr Obes 2018;11:85-92.  Back to cited text no. 17
Mooren FC. Magnesium and disturbances in carbohydrate metabolism. Diabetes Obes Metab 2015;17:813-23.  Back to cited text no. 18
Uwitonze AM, Razzaque MS. Role of magnesium in vitamin D activation and function. J Am Osteopath Assoc 2018;118:181-9.  Back to cited text no. 19
Spiga R, Mannino GC, Mancuso E, Averta C, Paone C, Rubino M, et al. Are circulating Mg2+ levels associated with glucose tolerance profiles and incident type 2 diabetes? Nutrients 2019;11:2460.  Back to cited text no. 20
Piuri G, Zocchi M, Della Porta M, Ficara V, Manoni M, Zuccotti GV, et al. Magnesium in obesity, metabolic syndrome, and type 2 diabetes. Nutrients 2021;13:320.  Back to cited text no. 21
Gommers LM, Hill TG, Ashcroft FM, de Baaij JH. Low extracellular magnesium does not impair glucose-stimulated insulin secretion. PLoS One 2019;14:e0217925.  Back to cited text no. 22
Guerrero-Romero F, Tamez-Perez HE, González-González G, Salinas-Martínez AM, Montes-Villarreal J, Treviño-Ortiz JH, et al. Oral magnesium supplementation improves insulin sensitivity in non-diabetic subjects with insulin resistance. A double-blind placebo-controlled randomized trial. Diabetes Metab 2004;30:253-8.  Back to cited text no. 23
Dominguez LJ, Barbagallo M, Sowers JR, Resnick LM. Magnesium responsiveness to insulin and insulin-like growth factor I in erythrocytes from normotensive and hypertensive subjects. J Clin Endocrinol Metab 1998;83:4402-7.  Back to cited text no. 24
Feng J, Wang H, Jing Z, Wang Y, Cheng Y, Wang W, et al. Role of magnesium in type 2 diabetes mellitus. Biol Trace Elem Res 2020;196:74-85.  Back to cited text no. 25
Dou M, Ma Y, Ma AG, Han L, Song MM, Wang YG, et al. Combined chromium and magnesium decreases insulin resistance more effectively than either alone. Asia Pac J Clin Nutr 2016;25:747-53.  Back to cited text no. 26
Song Y, He K, Levitan EB, Manson JE, Liu S. Effects of oral magnesium supplementation on glycaemic control in Type 2 diabetes: A meta-analysis of randomized double-blind controlled trials. Diabet Med 2006;23:1050-6.  Back to cited text no. 27
Mooren FC, Krüger K, Völker K, Golf SW, Wadepuhl M, Kraus A. Oral magnesium supplementation reduces insulin resistance in non-diabetic subjects – A double-blind, placebo-controlled, randomized trial. Diabetes Obes Metab 2011;13:281-4.  Back to cited text no. 28
Hruby A, Meigs JB, O'Donnell CJ, Jacques PF, McKeown NM. Higher magnesium intake reduces risk of impaired glucose and insulin metabolism and progression from prediabetes to diabetes in middle-aged Americans. Diabetes Care 2014;37:419-27.  Back to cited text no. 29
Solati M, Ouspid E, Hosseini S, Soltani N, Keshavarz M, Dehghani M. Oral magnesium supplementation in type II diabetic patients. Med J Islam Repub Iran 2014;28:67.  Back to cited text no. 30
Maktabi M, Jamilian M, Amirani E, Chamani M, Asemi Z. The effects of magnesium and vitamin E co-supplementation on parameters of glucose homeostasis and lipid profiles in patients with gestational diabetes. Lipids Health Dis 2018;17:163.  Back to cited text no. 31
Rayssiguier Y, Gueux E. Magnesium and lipids in cardiovascular disease. J Am Coll Nutr 1986;5:507-19.  Back to cited text no. 32
Navarrete-Cortes A, Ble-Castillo JL, Guerrero-Romero F, Cordova-Uscanga R, Juárez-Rojop IE, Aguilar-Mariscal H, et al. No effect of magnesium supplementation on metabolic control and insulin sensitivity in type 2 diabetic patients with normomagnesemia. Magnes Res 2014;27:48-56.  Back to cited text no. 33
de Valk HW, Verkaaik R, van Rijn HJ, Geerdink RA, Struyvenberg A. Oral magnesium supplementation in insulin-requiring Type 2 diabetic patients. Diabet Med 1998;15:503-7.  Back to cited text no. 34
Gullestad L, Jacobsen T, Dolva LO. Effect of magnesium treatment on glycemic control and metabolic parameters in NIDDM patients. Diabetes Care 1994;17:460-1.  Back to cited text no. 35
Johansen K, Dagogo-Jack S. Non-insulin-dependent diabetes mellitus. In: Diabetes Guide. Berlin Heidelberg, Springer; 1992. p. 79-83.  Back to cited text no. 36
Shigematsu M, Tomonaga S, Shimokawa F, Murakami M, Imamura T, Matsui T, et al. Regulatory responses of hepatocytes, macrophages and vascular endothelial cells to magnesium deficiency. J Nutr Biochem 2018;56:35-47.  Back to cited text no. 37
Hardy S, Kostantin E, Wang SJ, Hristova T, Galicia-Vázquez G, Baranov PV, et al. Magnesium-sensitive upstream ORF controls PRL phosphatase expression to mediate energy metabolism. Proc Natl Acad Sci U S A 2019;116:2925-34.  Back to cited text no. 38
Chen Z, Wang J, Sun W, Archibong E, Kahkoska AR, Zhang X, et al. Synthetic beta cells for fusion-mediated dynamic insulin secretion. Nat Chem Biol 2018;14:86-93.  Back to cited text no. 39
Dhanawat A, Mohanty L, Khatua P, Panda SS, Maheshwari G. Correlation of fasting serum magnesium with glycaemic and nephropathy status in type 2 diabetes mellitus. J Clin Diagn Res 2020;14:21-25.  Back to cited text no. 40
Radin JN, Kelliher JL, Solórzano PK, Grim KP, Ramezanifard R, Slauch JM, et al. Metal-independent variants of phosphoglycerate mutase promote resistance to nutritional immunity and retention of glycolysis during infection. PLoS Pathog 2019;15:e1007971.  Back to cited text no. 41
Dibaba DT, Xun P, Fly AD, Yokota K, He K. Dietary magnesium intake and risk of metabolic syndrome: A meta-analysis. Diabet Med 2014;31:1301-9.  Back to cited text no. 42
Ashcroft FM, Harrison DE, Ashcroft SJ. Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. Nature 1984;312:446-8.  Back to cited text no. 43
Cunha AR, Umbelino B, Correia ML, Neves MF. Magnesium and vascular changes in hypertension. Int J Hypertens 2012;2012:754250.  Back to cited text no. 44
Giménez-Mascarell P, Schirrmacher CE, Martínez-Cruz LA, Müller D. Novel aspects of renal magnesium homeostasis. Front Pediatr 2018;6:77.  Back to cited text no. 45
de Baaij JH, Hoenderop JG, Bindels RJ. Magnesium in man: Implications for health and disease. Physiol Rev 2015;95:1-46.  Back to cited text no. 46
Shimaoka T, Wang Y, Morishima M, Miyamoto S, Ono K. Hypomagnesemic down-regulation of L-type Ca (2+) channel in cardiomyocyte as an arrhythmogenic substrate in rats. Pathophysiology 2015;22:87-93.  Back to cited text no. 47
Atwater I, Frankel BJ, Rojas E, Grodsky GM. Beta cell membrane potential and insulin release; role of calcium and calcium: magnesium ratio. Q J Exp Physiol 1983;68:233-45.  Back to cited text no. 48
Wang CC, Chen HJ, Chan DC, Chiu CY, Liu SH, Lan KC. Low-dose acrolein, an endogenous and exogenous toxic molecule, inhibits glucose transport via an inhibition of Akt-regulated GLUT4 signaling in skeletal muscle cells. Int J Mol Sci 2021;22:7228.  Back to cited text no. 49
Kostov K, Halacheva L. Role of magnesium deficiency in promoting atherosclerosis, endothelial dysfunction, and arterial stiffening as risk factors for hypertension. Int J Mol Sci 2018;19:1724.  Back to cited text no. 50
Cutler DA, Pride SM, Cheung AP. Low intakes of dietary fiber and magnesium are associated with insulin resistance and hyperandrogenism in polycystic ovary syndrome: A cohort study. Food Sci Nutr 2019;7:1426-37.  Back to cited text no. 51
Al Alawi AM, Majoni SW, Falhammar H. Magnesium and human health: Perspectives and research directions. Int J Endocrinol 2018;2018:9041694.  Back to cited text no. 52
Vicario PP, Bennun A. Separate effects of Mg2+, MgATP, and ATP4- on the kinetic mechanism for insulin receptor tyrosine kinase. Arch Biochem Biophys 1990;278:99-105.  Back to cited text no. 53
Siddiqui MU, Ali I, Zakariya M, Asghar SP, Ahmed MR, Ibrahim GH. Frequency of hypomagnesemia in patients with uncontrolled type ii diabetes mellitus. Pak Armed Forces Med J 2016;66:845-50.  Back to cited text no. 54
Mi J, He W, Lv J, Zhuang K, Huang H, Quan S. Effect of berberine on the HPA-axis pathway and skeletal muscle GLUT4 in type 2 diabetes mellitus rats. Diabetes Metab Syndr Obes 2019;12:1717-25.  Back to cited text no. 55
Solaimani H, Soltani N, MaleKzadeh K, Sohrabipour S, Zhang N, Nasri S, et al. Modulation of GLUT4 expression by oral administration of Mg (2+) to control sugar levels in STZ-induced diabetic rats. Can J Physiol Pharmacol 2014;92:438-44.  Back to cited text no. 56
Barooti A, Kamran M, Kharazmi F, Eftakhar E, Malekzadeh K, Talebi A, et al. Effect of oral magnesium sulfate administration on blood glucose hemostasis via inhibition of gluconeogenesis and FOXO1 gene expression in liver and muscle in diabetic rats. Biomed Pharmacother 2019;109:1819-25  Back to cited text no. 57
Ha BG, Park JE, Cho HJ, Shon YH. Stimulatory effects of balanced deep sea water on mitochondrial biogenesis and function. PLoS One 2015;10:e0129972.  Back to cited text no. 58
Kamran M, Kharazmi F, Malekzadeh K, Talebi A, Khosravi F, Soltani N. Effect of long-term administration of oral magnesium sulfate and insulin to reduce streptozotocin-induced hyperglycemia in rats: The role of Akt2 and IRS1 gene expressions. Biol Trace Elem Res 2019;190:396-404.  Back to cited text no. 59
Lan S, Albinsson S. Regulation of IRS-1, insulin signaling and glucose uptake by miR-143/145 in vascular smooth muscle cells. Biochem Biophys Res Commun 2020;529:119-25.  Back to cited text no. 60
Jaiswal N, Gavin MG, Quinn WJ 3rd, Luongo TS, Gelfer RG, Baur JA, et al. The role of skeletal muscle Akt in the regulation of muscle mass and glucose homeostasis. Mol Metab 2019;28:1-13.  Back to cited text no. 61
Kersten S, Desvergne B, Wahli W. Roles of PPARs in health and disease. Nature 2000;405:421-4.  Back to cited text no. 62
Khosravi F, Kharazmi F, Kamran M, Malekzadeh K, Talebi A, Soltani N. The role of PPAR-γ and NFKB genes expression in muscle to improve hyperglycemia in STZ-induced diabetic rat following magnesium sulfate administration. Int J Physiol Pathophysiol Pharmacol 2018;10:124-31.  Back to cited text no. 63
Habor A. Peroxisome proliferator activated receptors. Farmacia 2010;58:13.  Back to cited text no. 64
Bensinger SJ, Tontonoz P. Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature 2008;454:470-7.  Back to cited text no. 65
Quinn CE, Hamilton PK, Lockhart CJ, McVeigh GE. Thiazolidinediones: Effects on insulin resistance and the cardiovascular system. Br J Pharmacol 2008;153:636-45.  Back to cited text no. 66
Pujimulyani D, Yulianto WA, Setyowati A, Arumwardana S, Sari Widya Kusuma H, Adhani Sholihah I, et al. Hypoglycemic activity of Curcuma mangga Val. extract via modulation of GLUT4 and PPAR-γ mRNA expression in 3T3-L1 adipocytes. J Exp Pharmacol 2020;12:363-9.  Back to cited text no. 67
Armoni M, Harel C, Karnieli E. Transcriptional regulation of the GLUT4 gene: From PPAR-gamma and FOXO1 to FFA and inflammation. Trends Endocrinol Metab 2007;18:100-7.  Back to cited text no. 68
Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: Comparison with the euglycemic insulin clamp. Diabetes Care 1999;22:1462-70.  Back to cited text no. 69
Jeong JW, Lee B, Kim DH, Jeong HO, Moon KM, Kim MJ, et al. Mechanism of action of magnesium lithospermate B against aging and obesity-induced ER stress, insulin resistance, and inflammsome formation in the liver. Molecules 2018;23:2098.  Back to cited text no. 70
Chen MJ, Yan X, Chen YQ, Zhao C. Phytochemicals for non-insulin diabetes mellitus: A minireview on plant-derived compounds hypoglycemic activity. J Food Nutr Sci 2017;5:23-7.  Back to cited text no. 71
Maiese K. FoxO transcription factors and regenerative pathways in diabetes mellitus. Curr Neurovasc Res 2015;12:404-13.  Back to cited text no. 72
Sato T, Watanabe Y, Nishimura Y, Inoue M, Morita A, Miura S. Acute fructose intake suppresses fasting-induced hepatic gluconeogenesis through the AKT-FoxO1 pathway. Biochem Biophys Rep 2019;18:100638.  Back to cited text no. 73
Gross DN, Wan M, Birnbaum MJ. The role of FOXO in the regulation of metabolism. Curr Diab Rep 2009;9:208-14.  Back to cited text no. 74
Chen L, Chen R, Wang H, Liang F. Mechanisms linking inflammation to insulin resistance. Int J Endocrinol 2015;2015:508409.  Back to cited text no. 75
Ghanbari M, Momen Maragheh S, Aghazadeh A, Mehrjuyan SR, Hussen BM, Abdoli Shadbad M, et al. Interleukin-1 in obesity-related low-grade inflammation: From molecular mechanisms to therapeutic strategies. Int Immunopharmacol 2021;96:107765.  Back to cited text no. 76
Rehman K, Akash MS. Mechanisms of inflammatory responses and development of insulin resistance: How are they interlinked? J Biomed Sci 2016;23:87.  Back to cited text no. 77
Khodabandehloo H, Gorgani-Firuzjaee S, Panahi G, Meshkani R. Molecular and cellular mechanisms linking inflammation to insulin resistance and β-cell dysfunction. Transl Res 2016;167:228-56.  Back to cited text no. 78
Liu M, Dudley SC Jr. Magnesium, oxidative stress, inflammation, and cardiovascular disease. Antioxidants (Basel) 2020;9:907.  Back to cited text no. 79
Ribeiro MC, Avila DS, Barbosa NB, Meinerz DF, Waczuk EP, Hassan W, et al. Hydrochlorothiazide and high-fat diets reduce plasma magnesium levels and increase hepatic oxidative stress in rats. Magnes Res 2013;26:32-40.  Back to cited text no. 80
Maiese K, Morhan SD, Chong ZZ. Oxidative stress biology and cell injury during type 1 and type 2 diabetes mellitus. Curr Neurovasc Res 2007;4:63-71.  Back to cited text no. 81
Beverly JK, Budoff MJ. Atherosclerosis: Pathophysiology of insulin resistance, hyperglycemia, hyperlipidemia, and inflammation. J Diabetes 2020;12:102-4.  Back to cited text no. 82
Khot V, Upadhye S, Kothali B, Apte A, Kulkarni A, Patil A, et al. Free radicals, oxidative stress and diseases an overview. Am. J. PharmTech Res 2018;8;59-67  Back to cited text no. 83
Olawale F, Aninye II, Ajaja UI, Nwozo SO. Long-term hyperglycemia impairs hormonal balance and induces oxidative damage in ovaries of streptozotocin-induced diabetic wistar rat. Niger J Physiol Sci 2020;35:46-51.  Back to cited text no. 84
Volpe CM, Villar-Delfino PH, Dos Anjos PM, Nogueira-Machado JA. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis 2018;9:119.  Back to cited text no. 85
Morais JB, Severo JS, Santos LR, de Sousa Melo SR, de Oliveira Santos R, de Oliveira AR, et al. Role of magnesium in oxidative stress in individuals with obesity. Biol Trace Elem Res 2017;176:20-6.  Back to cited text no. 86
Jamilian M, Mirhosseini N, Eslahi M, Bahmani F, Shokrpour M, Chamani M, et al. The effects of magnesium-zinc-calcium-vitamin D co-supplementation on biomarkers of inflammation, oxidative stress and pregnancy outcomes in gestational diabetes. BMC Pregnancy Childbirth 2019;19:107.  Back to cited text no. 87
Sajjan NB, Choudhari AS, Desai GM, Dharapur M, Wali VV. Evaluation of association of serum magnesium with dyslipidaemia in diabetic nephropathy – A case control study. Natl J Med Res 2014;4:318-21.  Back to cited text no. 88
Pavithra D, Praveen D, Chowdary PR, Aanandhi MV. A review on role of Vitamin E supplementation in type 2 diabetes mellitus. Drug Invent Today 2018;10:236-40.  Back to cited text no. 89
Wada J, Makino H. Inflammation and the pathogenesis of diabetic nephropathy. Clin Sci (Lond) 2013;124:139-52.  Back to cited text no. 90
Lin CY, Tsai PS, Hung YC, Huang CJ. L-type calcium channels are involved in mediating the anti-inflammatory effects of magnesium sulphate. Br J Anaesth 2010;104:44-51.  Back to cited text no. 91
Voma C, Romani A. Role of Magnesium in the Regulation of Hepatic Glucose Homeostasis. London, UK: InTech; 2014. p. 95-111.  Back to cited text no. 92
Nakamura A, Omori K, Terauchi Y. Glucokinase activation or inactivation: Which will lead to the treatment of type 2 diabetes? Diabetes Obes Metab 2021;23:2199-206.  Back to cited text no. 93
Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): Regulation, actions, and diseases. Pharmacol Ther 2015;148:114-31.  Back to cited text no. 94
Medina M, Wandosell F. Deconstructing GSK-3: The fine regulation of its activity. Int J Alzheimers Dis 2011;2011:479249.  Back to cited text no. 95
Garfinkel L, Garfinkel D. Magnesium regulation of the glycolytic pathway and the enzymes involved. Magnesium 1985;4:60-72.  Back to cited text no. 96
Debnath B, Das T, Dhore R, Chakrabarti A, Kumar P, Acharjee S. Role of some critical minerals in nutrient metabolism 2018 (4):; 17-19.  Back to cited text no. 97
Pilchova I, Klacanova K, Tatarkova Z, Kaplan P, Racay P. The involvement of Mg2+in regulation of cellular and mitochondrial functions. Oxid Med Cell Longev 2017;2017:6797460.  Back to cited text no. 98