1. |
Ali N. Relationship between COVID-19 infection and liver injury: A review of recent data. Front Med (Lausanne) 2020;7:458.
|
2. |
Azhar M, Thomas PA. Comparative Review of Feature Selection and Classification Modeling. 2019 International Conference on Advances in Computing, Communication and Control (ICAC3); 2019. p. 1-9.
|
3. |
Baj J, Karakuła-Juchnowicz H, Teresiński G, Buszewicz G, Ciesielka M, Sitarz E, et al. COVID-19: Specific and non-specific clinical manifestations and symptoms: The current state of knowledge. J Clin Med 2020;9:1753.
|
4. |
Bashash D, Olfatifar M, Hadaegh F, Asadzadeh Aghdaei H, Zali MR. COVID-19 prognosis: What we know of the significance and prognostic value of liver-related laboratory parameters in SARS-CoV-2 infection. Gastroenterol Hepatol Bed Bench 2020;13:313-20.
|
5. |
Biswas M, Rahaman S, Biswas TK, Haque Z, Ibrahim B. Association of sex, age, and comorbidities with mortality in COVID-19 patients: A systematic review and meta-analysis. Intervirology 2020;64:36-47.
|
6. |
Bonanad C, García-Blas S, Tarazona-Santabalbina F, Sanchis J, Bertomeu-González V, Fácila L, et al. The effect of age on mortality in patients with COVID-19: A meta-analysis with 611,583 subjects. J Am Med Dir Assoc 2020;21:915-8.
|
7. |
Borges L, Pithon-Curi TC, Curi R, Hatanaka E. COVID-19 and neutrophils: The relationship between hyperinflammation and neutrophil extracellular traps. Mediators Inflamm 2020;2020:8829674.
|
8. |
Breiman L. Random forests. Mach Learn 2001;45:5-32.
|
9. |
Cabitza F, Campagner A, Ferrari D, Di Resta C, Ceriotti D, Sabetta E, et al. Development, evaluation, and validation of machine learning models for COVID-19 detection based on routine blood tests. Clin Chem Lab Med 2020;59:421-31.
|
10. |
Chen D, Pan X, Xiao P, Farwell MA, Zhang B. Evaluation and identification of reliable reference genes for pharmacogenomics, toxicogenomics, and small RNA expression analysis. J Cell Physiol 2011;226:2469-77.
|
11. |
Chen LZ, Lin ZH, Chen J, Liu SS, Shi T, Xin YN. Can elevated concentrations of ALT and AST predict the risk of 'recurrence' of COVID-19? Epidemiol Infect 2020;148:e218.
|
12. |
Cheng A, Hu L, Wang Y, Huang L, Zhao L, Zhang C, et al. Diagnostic performance of initial blood urea nitrogen combined with D-dimer levels for predicting in-hospital mortality in COVID-19 patients. Int J Antimicrob Agents 2020;56:106110.
|
13. |
Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics 2020;21:6.
|
14. |
Chicco D, Rovelli C. Computational prediction of diagnosis and feature selection on mesothelioma patient health records. PLoS One 2019;14:e0208737.
|
15. |
Chicco D, Tötsch N, Jurman G. The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation. BioData Min 2021;14:13.
|
16. |
Chowdhury ME, Rahman T, Khandakar A, Al-Madeed S, Zughaier SM, Doi SA, et al. An early warning tool for predicting mortality risk of COVID-19 patients using machine learning. Cognit Comput 2021 Apr 21:1-6.
|
17. |
Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta Biomed 2020;91:157-60.
|
18. |
Debnath S, Barnaby DP, Coppa K, Makhnevich A, Kim EJ, Chatterjee S, et al. Machine learning to assist clinical decision-making during the COVID-19 pandemic. Bioelectron Med 2020;6:1-8.
|
19. |
Farghaly S, Makboul M. Correlation between age, sex, and severity of coronavirus disease-19 based on chest computed tomography severity scoring system. Egypt J Radiol Nucl Med 2021;52:1-8.
|
20. |
Foy BH, Carlson JC, Reinertsen E, Padros I Valls R, Pallares Lopez R, Palanques-Tost E, et al. Association of red blood cell distribution width with mortality risk in hospitalized adults with SARS-CoV-2 infection. JAMA Netw Open 2020;3:e2022058.
|
21. |
Ghahramani S, Tabrizi R, Lankarani KB, Kashani SM, Rezaei S, Zeidi N, et al. Laboratory features of severe vs. non-severe COVID-19 patients in Asian populations: A systematic review and meta-analysis. Eur J Med Res 2020;25:30.
|
22. |
Gomez JM, Du-Fay-de-Lavallaz JM, Fugar S, Sarau A, Simmons JA, Clark B, et al. Sex differences in coronavirus disease 2019 (COVID-19) hospitalization and mortality. J Women's Health 2021;30:646-53.
|
23. |
Hendren NS, de Lemos JA, Ayers C, Das SR, Rao A, Carter S, et al. Association of body mass index and age with morbidity and mortality in patients hospitalized with COVID-19: Results from the American Heart Association COVID-19 Cardiovascular Disease Registry. Circulation 2021;143:135-44.
|
24. |
Henry BM, Benoit JL, Benoit S, Pulvino C, Berger BA, Olivera MH, et al. Red blood cell distribution width (RDW) predicts COVID-19 severity: A prospective, observational study from the Cincinnati SARS-CoV-2 Emergency Department Cohort. Diagnostics (Basel) 2020;10:618.
|
25. |
Hintze JL, Nelson RD. Violin plots: A box plot-density trace synergism. Am Stat 1998;52:181-4.
|
26. |
Hjerpe A. Computing random forests variable importance measures (vim) on mixed numerical and categorical data. Stochholm, Sweden: KTH Royal Institute of Technology School of Computer Science and Communication; 2016.
|
27. |
Janardhanan P, Sabika F. Effectiveness of support vector machines in medical data mining. J Commun Softw Syst 2015;11:25-30.
|
28. |
Jin JM, Bai P, He W, Wu F, Liu XF, Han DM, et al. Gender differences in patients with COVID-19: Focus on severity and mortality. Front Public Health 2020;8:152.
|
29. |
Kaye AD, Okeagu CN, Pham AD, Silva RA, Hurley JJ, Arron BL, et al. Economic impact of COVID-19 pandemic on healthcare facilities and systems: International perspectives. Best Pract Res Clin Anaesthesiol 2021;35:293-306.
|
30. |
Kim HY. Statistical notes for clinical researchers: Chi-squared test and Fisher's exact test. Restor Dent Endod 2017;42:152-5.
|
31. |
Kong M, Zhang H, Cao X, Mao X, Lu Z. Higher level of neutrophil-to-lymphocyte is associated with severe COVID-19. Epidemiol Infect 2020;148:e139.
|
32. |
Lashari SA, Ibrahim R, Senan N, Taujuddin N. Application of Data Mining Techniques for Medical Data Classification: A Review. Vol. 150. MATEC Web of Conferences; 2018. p. 06003.
|
33. |
Lewis RJ. An Introduction to Classification and Regression Tree (CART) Analysis. Annual Meeting of the Society for Academic Emergency Medicine in San Francisco, California; 2000. p. 14.
|
34. |
Liu S, Zhang L, Weng H, Yang F, Jin H, Fan F, et al. Association between average plasma potassium levels and 30-day mortality during hospitalization in patients with COVID-19 in Wuhan, China. Int J Med Sci 2021;18:736-43.
|
35. |
Liu YM, Xie J, Chen MM, Zhang X, Cheng X, Li H, et al. Kidney function indicators predict adverse outcomes of COVID-19. Med (N Y) 2021;2:38-48.e2.
|
36. |
Liu Y, Sun W, Guo Y, Chen L, Zhang L, Zhao S, et al. Association between platelet parameters and mortality in coronavirus disease 2019: Retrospective cohort study. Platelets 2020;31:490-6.
|
37. |
Lodder RA, Hieftje GM. Quantile analysis: A method for characterizing data distributions. Appl Spectrosc 1988;42:1512-20.
|
38. |
Lorente L, Martín MM, Argueso M, Solé-Violán J, Perez A, Marcos Y Ramos JA, et al. Association between red blood cell distribution width and mortality of COVID-19 patients. Anaesth Crit Care Pain Med 2021;40:100777.
|
39. |
McKnight PE, Najab J. Mann-Whitney U test. In: The Corsini Encyclopedia of Psychology. 2010 Jan 30:1.
|
40. |
Meizlish ML, Pine AB, Bishai JD, Goshua G, Nadelmann ER, Simonov M, et al. A neutrophil activation signature predicts critical illness and mortality in COVID-19. Blood Adv 2021;5:1164-77.
|
41. |
Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F, Chang CC, et al. Package 'e1071'. R J 2019.
|
42. |
Milborrow S, Milborrow MS. Package 'rpart. plot'; 2020.
|
43. |
Minghim R, Huancapaza L, Artur E, Telles GP, Belizario IV. Graphs from features: Tree-based graph layout for feature analysis. Algorithms 2020;13:302.
|
44. |
Molnar C. Interpretable Machine Learning. Lulu.com; 2020.
|
45. |
Nogueira SÁ, Oliveira SC, Carvalho AF, Neves JM, Silva LS, Silva Junior GB, et al. Renal changes and acute kidney injury in covid-19: A systematic review. Rev Assoc Med Bras (1992) 2020;66 Suppl 2:112-7.
|
46. |
Osi AA, Dikko HG, Abdu M, Ibrahim A, Isma'il LA, Sarki H, et al. A classification approach for predicting COVID-19 patient survival outcome with machine learning techniques. medRxiv 2020.
|
47. |
Park SE. Epidemiology, virology, and clinical features of severe acute respiratory syndrome -coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19). Clin Exp Pediatr 2020;63:119-24.
|
48. |
Pecoraro F, Clemente F, Luzi D. The efficiency in the ordinary hospital bed management in Italy: An in-depth analysis of intensive care unit in the areas affected by COVID-19 before the outbreak. PLoS One 2020;15:e0239249.
|
49. |
Pijls BG, Jolani S, Atherley A, Derckx RT, Dijkstra JI, Franssen GH, et al. Demographic risk factors for COVID-19 infection, severity, ICU admission and death: A meta-analysis of 59 studies. BMJ Open 2021;11:e044640.
|
50. |
Ponti G, Maccaferri M, Ruini C, Tomasi A, Ozben T. Biomarkers associated with COVID-19 disease progression. Crit Rev Clin Lab Sci 2020;57:389-99.
|
51. |
Pourbagheri-Sigaroodi A, Bashash D, Fateh F, Abolghasemi H. Laboratory findings in COVID-19 diagnosis and prognosis. Clin Chim Acta 2020;510:475-82.
|
52. |
Pradhan A, Olsson PE. Sex differences in severity and mortality from COVID-19: Are males more vulnerable? Biol Sex Differ 2020;11:53.
|
53. |
RColorBrewer S, Liaw MA. Package 'randomForest'. Berkeley, CA, USA: University of California; 2018.
|
54. |
Ripley B, Venables B, Bates DM, Hornik K, Gebhardt A, Firth D, et al. Package 'mass'. Cran r. 2013;538:113-20..
|
55. |
Rocca B. Handling imbalanced datasets in machine learning. Towards Data Science 2019.
|
56. |
Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020;46:846-8.
|
57. |
Sasson I. Age and COVID-19 mortality: A comparison of Gompertz doubling time across countries and causes of death. Demogr Res 2021;44:379-96.
|
58. |
Sun DW, Zhang D, Tian RH, Li Y, Wang YS, Cao J, et al. The underlying changes and predicting role of peripheral blood inflammatory cells in severe COVID-19 patients: A sentinel? Clin Chim Acta 2020;508:122-9.
|
59. |
|
60. |
von Jouanne-Diedrich H. OneR: One rule machine learning classification algorithm with enhancements. R package version. 2017;2:2.
|
61. |
Wang Q, Zhao H, Liu LG, Wang YB, Zhang T, Li MH, et al. Pattern of liver injury in adult patients with COVID-19: A retrospective analysis of 105 patients. Mil Med Res 2020;7:28.
|
62. |
Wickham H, Chang W, Wickham MH. Package 'ggplot2'. Create Elegant Data Visualisations Using the Grammar of Graphics. Vol. 2. Version; 2016. p. 1-189.
|
63. |
Xanthopoulos P, Pardalos PM, Trafalis TB. Robust data mining. Springer Science & Business Media; 2012.
|