The prominent role of miR-942 in carcinogenesis of tumors

Reviewers

Authors

1 Department of Medical Laboratory Science, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

2 Department of Biological Science, Kharazmi University, Tehran, Iran

3 Department of Biotechnology, Faculty of Biological Science, Islamic Azad University, North Tehran Branch, Tehran, Iran

4 Department of Biotechnology, Faculty of Biological Science, Islamic Azad University East Tehran Branch, Iran

5 Department of Molecular Genetics, Islamic Azad University, East Tehran Branch, Tehran, Iran

6 Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran

Abstract

As a family of short noncoding RNAs, MicroRNAs have been identified as possible biomarkers for cancer discovery and assist in therapy control due to their epigenetic involvement in gene expression and other cellular biological processes. In the present review, the evidence for reaching the clinical effect and the molecular mechanism of miR-942 in various kinds of cancer is amassed. Dysregulation of miR-942 amounts in different kinds of malignancies, as bladder cancer, esophageal squamous cell carcinoma, breast cancer, cervical cancer, gastric cancer, colorectal cancer, Kaposi's sarcoma, melanoma, Hepatocellular carcinoma, nonsmall-cell lung cancer, oral squamous cell carcinoma, osteosarcoma, ovarian cancer, pancreatic ductal adenocarcinoma, renal cell carcinoma, and prostate cancer has stated a considerable increase or decrease in its level indicating its function as oncogene or tumor suppressor. MiR-942 is included in cell proliferation, migration, and invasion through cell cycle pathways, including pathways of transforming growth factor-beta signaling pathways, Wnt pathway, JAK/STAT pathway, PI3K/AKT pathway, apoptosis pathway, hippo signaling pathway, lectin pathway, interferon-gamma signaling, signaling by G-protein coupled receptor, developmental genes, nuclear factor-kappa B pathway, Mesodermal commitment pathway, and T-cell receptor signaling in cancer. An important biomarker, MiR-942 is a potential candidate for prediction in several cancers. The present investigation introduced miR-942 as a prognostic marker for early discovery of tumor progression, metastasis, and development.

Keywords

1.
Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al. Landscape of transcription in human cells. Nature 2012;489:101-8.  Back to cited text no. 1
    
2.
Lee JT. Epigenetic regulation by long noncoding RNAs. Science 2012;338:1435-9.  Back to cited text no. 2
    
3.
Zhu S, Li W, Liu J, Chen CH, Liao Q, Xu P, et al. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Nat Biotechnol 2016;34:1279-86.  Back to cited text no. 3
    
4.
Kambara H, Niazi F, Kostadinova L, Moonka DK, Siegel CT, Post AB, et al. Negative regulation of the interferon response by an interferon-induced long non-coding RNA. Nucleic Acids Res 2014;42:10668-80.  Back to cited text no. 4
    
5.
Li Z, Shen J, Chan MT, Wu WK. TUG 1: A pivotal oncogenic long non-coding RNA of human cancers. Cell Prolif 2016;49:471-5.  Back to cited text no. 5
    
6.
Jiang X, Ma N, Wang D, Li F, He R, Li D, et al. Metformin inhibits tumor growth by regulating multiple miRNAs in human cholangiocarcinoma. Oncotarget 2015;6:3178-94.  Back to cited text no. 6
    
7.
Vance KW, Sansom SN, Lee S, Chalei V, Kong L, Cooper SE, et al. The long non-coding RNA Paupar regulates the expression of both local and distal genes. EMBO J 2014;33:296-311.  Back to cited text no. 7
    
8.
Huang B, Song JH, Cheng Y, Abraham JM, Ibrahim S, Sun Z, et al. Long non-coding antisense RNA KRT7-AS is activated in gastric cancers and supports cancer cell progression by increasing KRT7 expression. Oncogene 2016;35:4927-36.  Back to cited text no. 8
    
9.
Ambros V. microRNAs: Tiny regulators with great potential. Cell 2001;107:823-6.  Back to cited text no. 9
    
10.
Zhao Y, Srivastava D. A developmental view of microRNA function. Trends Biochem Sci 2007;32:189-97.  Back to cited text no. 10
    
11.
Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 2015;15:321-33.  Back to cited text no. 11
    
12.
Wang F, Fan M, Zhou X, Yu Y, Cai Y, Wu H, et al. A positive feedback loop between TAZ and miR-942-3p modulates proliferation, angiogenesis, epithelial-mesenchymal transition process, glycometabolism and ROS homeostasis in human bladder cancer. J Exp Clin Cancer Res 2021;40:44.  Back to cited text no. 12
    
13.
Ou R, Mo L, Tang H, Leng S, Zhu H, Zhao L, et al. circRNA-AKT1 sequesters miR-942-5p to upregulate AKT1 and promote cervical cancer progression. Mol Ther Nucleic Acids 2020;20:308-22.  Back to cited text no. 13
    
14.
Guerra Martins dos Santos Assunção JA. Evolutionary Analysis of Animal microRNAs (Doctoral Dissertation, University of Cambridge); 2013.  Back to cited text no. 14
    
15.
Zhang J, Zhang Z, Sun J, Ma Q, Zhao W, Chen X, et al. MiR-942 regulates the function of breast cancer cell by targeting FOXA2. Biosci Rep 2019;39:BSR20192298.  Back to cited text no. 15
    
16.
Li Z, Zheng J, Lin W, Weng J, Hong W, Zou J, et al. Circular RNA hsa_circ_0001785 inhibits the proliferation, migration and invasion of breast cancer cells in vitro and in vivo by sponging miR-942 to upregulate SOCS3. Cell Cycle 2020;19:2811-25.  Back to cited text no. 16
    
17.
Zhang Y, Zhang J, Mao L, Li X. Long noncoding RNA HCG11 inhibited growth and invasion in cervical cancer by sponging miR-942-5p and targeting GFI1. Cancer Med 2020;9:7062-71.  Back to cited text no. 17
    
18.
Shan Z, An N, Qin J, Yang J, Sun H, Yang W. Long non-coding RNA Linc00675 suppresses cell proliferation and metastasis in colorectal cancer via acting on miR-942 and Wnt/β-catenin signaling. Biomed Pharmacother 2018;101:769-76.  Back to cited text no. 18
    
19.
Fasihi A, Soltani BM, Ranjbaran ZS, Bahonar S, Norouzi R, Nasiri S. Hsa-miR-942 fingerprint in colorectal cancer through Wnt signaling pathway. Gene 2019;712:143958.  Back to cited text no. 19
    
20.
Li S, Yan G, Liu W, Li C, Wang X. Circ0106714 inhibits tumorigenesis of colorectal cancer by sponging miR-942-5p and releasing DLG2 via Hippo-YAP signaling. Mol Carcinog 2020;59:1323-42.  Back to cited text no. 20
    
21.
Yu C, Li D, Yan Q, Wang Y, Yang X, Zhang S, et al. Circ_0005927 inhibits the progression of colorectal cancer by regulating miR-942-5p/BATF2 axis. Cancer Manag Res 2021;13:2295-306.  Back to cited text no. 21
    
22.
Ge C, Wu S, Wang W, Liu Z, Zhang J, Wang Z, et al. miR-942 promotes cancer stem cell-like traits in esophageal squamous cell carcinoma through activation of Wnt/β-catenin signalling pathway. Oncotarget 2015;6:10964.  Back to cited text no. 22
    
23.
Lu J, Wang YH, Huang XY, Xie JW, Wang JB, Lin JX, et al. circ-CEP85L suppresses the proliferation and invasion of gastric cancer by regulating NFKBIA expression via miR-942-5p. J Cell Physiol 2020;235:6287-99.  Back to cited text no. 23
    
24.
Zhang Q, Zhu B, Qian J, Wang K, Zhou J. miR-942 promotes proliferation and metastasis of hepatocellular carcinoma cells by inhibiting RRM2B. Onco Targets Ther 2019;12:8367-78.  Back to cited text no. 24
    
25.
Xu CY, Dong JF, Chen ZQ, Ding GS, Fu ZR. MiR-942-3p promotes the proliferation and invasion of hepatocellular carcinoma cells by targeting MBL2. Cancer Control 2019;26:1073274819846593.  Back to cited text no. 25
    
26.
Xu Q, Zhou L, Yang G, Meng F, Wan Y, Wang L, et al. Overexpression of circ_0001445 decelerates hepatocellular carcinoma progression by regulating miR-942-5p/ALX4 axis. Biotechnol Lett 2020;42:2735-47.  Back to cited text no. 26
    
27.
Lu L, Li S, Zhang Y, Luo Z, Chen Y, Ma J, et al. GFI1-mediated upregulation of LINC00675 as a ceRNA restrains hepatocellular carcinoma metastasis by sponging miR-942-5p. Front Oncol 2020;10:607593.  Back to cited text no. 27
    
28.
Yan Q, Shen C, Qin J, Li W, Hu M, Lu H, et al. HIV-1 Vpr inhibits Kaposi's sarcoma-associated herpesvirus lytic replication by inducing microrna miR-942-5p and activating NF-κB signaling. J Virol 2016;90:8739-53.  Back to cited text no. 28
    
29.
Zhang W, Mao K, Liu S, Xu Y, Ren J. miR-942-5p promotes the proliferation and invasion of human melanoma cells by targeting DKK3. J Recept Signal Transduct Res 2021;41:180-7.  Back to cited text no. 29
    
30.
Yang F, Shao C, Wei K, Jing X, Qin Z, Shi Y, et al. miR-942 promotes tumor migration, invasion, and angiogenesis by regulating EMT via BARX2 in non-small-cell lung cancer. J Cell Physiol 2019;234:23596-607.  Back to cited text no. 30
    
31.
Wang Q, Wu J, Huang H, Jiang Y, Huang Y, Fang H, et al. lncRNA LIFR-AS1 suppresses invasion and metastasis of non-small cell lung cancer via the miR-942-5p/ZNF471 axis. Cancer Cell Int 2020;20:180.  Back to cited text no. 31
    
32.
Zhou C, Chen Z, Zhao L, Zhao W, Zhu Y, Liu J, et al. A novel circulating miRNA-based signature for the early diagnosis and prognosis prediction of non-small-cell lung cancer. J Clin Lab Anal 2020;34:e23505.  Back to cited text no. 32
    
33.
Wang J, Jiang C, Li N, Wang F, Xu Y, Shen Z, et al. The circEPSTI1/mir-942-5p/LTBP2 axis regulates the progression of OSCC in the background of OSF via EMT and the PI3K/Akt/mTOR pathway. Cell Death Dis 2020;11:682.  Back to cited text no. 33
    
34.
Sun D, Zhu D. Circular RNA hsa_circ_0001649 suppresses the growth of osteosarcoma cells via sponging multiple miRNAs. Cell Cycle 2020;19:2631-43.  Back to cited text no. 34
    
35.
Du Z, Wang L, Xia Y. Circ_0015756 promotes the progression of ovarian cancer by regulating miR-942-5p/CUL4B pathway. Cancer Cell Int 2020;20:572.  Back to cited text no. 35
    
36.
Xie J, Wang S, Li G, Zhao X, Jiang F, Liu J, et al. circEPSTI1 regulates ovarian cancer progression via decoying miR-942. J Cell Mol Med 2019;23:3597-602.  Back to cited text no. 36
    
37.
Wong CH, Lou UK, Li Y, Chan SL, Tong JH, To KF, et al. CircFOXK2 promotes growth and metastasis of pancreatic ductal adenocarcinoma by complexing with RNA-binding proteins and sponging MiR-942. Cancer Res 2020;80:2138-49.  Back to cited text no. 37
    
38.
Prior C, Perez-Gracia JL, Garcia-Donas J, Rodriguez-Antona C, Guruceaga E, Esteban E, et al. Identification of tissue microRNAs predictive of sunitinib activity in patients with metastatic renal cell carcinoma. PLoS One 2014;9:e86263.  Back to cited text no. 38
    
39.
Chen Y, He J, Su C, Wang H, Chen Y, Guo W, et al. LINC00461 affects the survival of patients with renal cell carcinoma by acting as a competing endogenous RNA for microRNA942. Oncol Rep 2019;42:1924-34.  Back to cited text no. 39
    
40.
Luo N, Gao HM, Wang YQ, Li HJ, Li Y. MiR-942-5p alleviates septic acute kidney injury by targeting FOXO3. Eur Rev Med Pharmacol Sci 2020;24:6237-44.  Back to cited text no. 40
    
41.
McDonald AC, Vira M, Walter V, Shen J, Raman JD, Sanda MG, et al. Circulating microRNAs in plasma among men with low-grade and high-grade prostate cancer at prostate biopsy. Prostate 2019;79:961-8.  Back to cited text no. 41
    
42.
Li Z, Zheng J, Xia Q, He X, Bao J, Chen Z, et al. Identification of specific long non-coding ribonucleic acid signatures and regulatory networks in prostate cancer in fine-needle aspiration biopsies. Front Genet 2020;11:62.  Back to cited text no. 42
    
43.
Wu J, Wang J. HMGN5 expression in bladder cancer tissue and its role on prognosis. Eur Rev Med Pharmacol Sci 2018;22:970-5.  Back to cited text no. 43
    
44.
Chamie K, Litwin MS, Bassett JC, Daskivich TJ, Lai J, Hanley JM, et al. Recurrence of high-risk bladder cancer: A population-based analysis. Cancer 2013;119:3219-27.  Back to cited text no. 44
    
45.
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011;61:69-90.  Back to cited text no. 45
    
46.
Liu W, Schaffer L, Herrs N, Chollet C, Taylor S. Improved sleep after Qigong exercise in breast cancer survivors: A pilot study. Asia Pac J Oncol Nurs 2015;2:232-9.  Back to cited text no. 46
  [Full text]  
47.
Kam J, Kam J, Mann GB, Phillips C, Wentworth JM, King J, et al. Solitary pituitary metastasis from HER2-positive breast cancer. Asia Pac J Clin Oncol 2017;13:e181-4.  Back to cited text no. 47
    
48.
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394-424.  Back to cited text no. 48
    
49.
Prabhu M, Eckert LO. Development of World Health Organization (WHO) recommendations for appropriate clinical trial endpoints for next-generation Human Papillomavirus (HPV) vaccines. Papillomavirus Res 2016;2:185-9.  Back to cited text no. 49
    
50.
Rodríguez AC, Schiffman M, Herrero R, Wacholder S, Hildesheim A, Castle PE, et al. Rapid clearance of human papillomavirus and implications for clinical focus on persistent infections. J Natl Cancer Inst 2008;100:513-7.  Back to cited text no. 50
    
51.
Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH, et al. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci U S A 2005;102:16426-31.  Back to cited text no. 51
    
52.
Blum HE. Hepatocellular carcinoma: Therapy and prevention. World J Gastroenterol 2005;11:7391-400.  Back to cited text no. 52
    
53.
Sostres C, Gargallo CJ, Lanas A. Aspirin, cyclooxygenase inhibition and colorectal cancer. World J Gastrointest Pharmacol Ther 2014;5:40-9.  Back to cited text no. 53
    
54.
Zhou L, Chen Q, Wu J, Yang J, Yin H, Tian J, et al. miR-942-5p inhibits proliferation, metastasis, and epithelial-mesenchymal transition in colorectal cancer by targeting CCBE1. Biomed Res Int 2021;2021:9951405.  Back to cited text no. 54
    
55.
Parkin DM, Bray F. Evaluation of data quality in the cancer registry: Principles and methods Part II. Completeness. Eur J Cancer 2009;45:756-64.  Back to cited text no. 55
    
56.
Sitarz R, Skierucha M, Mielko J, Offerhaus GJ, Maciejewski R, Polkowski WP. Gastric cancer: Epidemiology, prevention, classification, and treatment. Cancer Manag Res 2018;10:239-48.  Back to cited text no. 56
    
57.
Invernizzi F, Viganò M, Grossi G, Lampertico P. The prognosis and management of inactive HBV carriers. Liver Int 2016;36 Suppl 1:100-4.  Back to cited text no. 57
    
58.
Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet 2018;391:1301-14.  Back to cited text no. 58
    
59.
Lee JS. The mutational landscape of hepatocellular carcinoma. Clin Mol Hepatol 2015;21:220-9.  Back to cited text no. 59
    
60.
Liu N, Zuo C, Wang X, Chen T, Yang D, Wang J, et al. miR-942 decreases TRAIL-induced apoptosis through ISG12a downregulation and is regulated by AKT. Oncotarget 2014;5:4959-71.  Back to cited text no. 60
    
61.
Yang D, Meng X, Xue B, Liu N, Wang X, Zhu H. MiR-942 mediates hepatitis C virus-induced apoptosis via regulation of ISG12a. PLoS One 2014;9:e94501.  Back to cited text no. 61
    
62.
Tao L, Xue D, Shen D, Ma W, Zhang J, Wang X, et al. MicroRNA-942 mediates hepatic stellate cell activation by regulating BAMBI expression in human liver fibrosis. Arch Toxicol 2018;92:2935-46.  Back to cited text no. 62
    
63.
Tao L, Wu L, Zhang W, Ma WT, Yang GY, Zhang J, et al. Peroxisome proliferator-activated receptor γ inhibits hepatic stellate cell activation regulated by miR-942 in chronic hepatitis B liver fibrosis. Life Sci 2020;253:117572.  Back to cited text no. 63
    
64.
Stănescu L, Foarfă C, Georgescu AC, Georgescu I. Kaposi's sarcoma associated with AIDS. Rom J Morphol Embryol 2007;48:181-7.  Back to cited text no. 64
    
65.
Ganem D. KSHV and the pathogenesis of Kaposi sarcoma: Listening to human biology and medicine. J Clin Invest 2010;120:939-49.  Back to cited text no. 65
    
66.
Mesri EA, Cesarman E, Boshoff C. Kaposi's sarcoma and its associated herpesvirus. Nat Rev Cancer 2010;10:707-19.  Back to cited text no. 66
    
67.
Gates AE, Kaplan LD. AIDS malignancies in the era of highly active antiretroviral therapy. Oncology (Williston Park) 2002;16:657-65.  Back to cited text no. 67
    
68.
Fan C, Moews PC, Walsh CT, Knox JR. Vancomycin resistance: Structure of D-alanine: D-alanine ligase at 2.3 A resolution. Science 1994;266:439-43.  Back to cited text no. 68
    
69.
Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 1995;332:1186-91.  Back to cited text no. 69
    
70.
Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM. Ebooks Corporation. Mixed effects models and extensions in ecology with R [Internet]. In: Statistics for Biology and Health. New York: Springer; 2009.  Back to cited text no. 70
    
71.
Carr S, Smith C, Wernberg J. Epidemiology and risk factors of melanoma. Surg Clin North Am 2020;100:1-12.  Back to cited text no. 71
    
72.
Owens B. Melanoma. Nature 2014;515:S109.  Back to cited text no. 72
    
73.
Rastrelli M, Tropea S, Rossi CR, Alaibac M. Melanoma: Epidemiology, risk factors, pathogenesis, diagnosis and classification. In Vivo 2014;28:1005-11.  Back to cited text no. 73
    
74.
Varrone F, Caputo E. The miRNAs role in melanoma and in its resistance to therapy. Int J Mol Sci 2020;21:878.  Back to cited text no. 74
    
75.
O'Neill CH, Scoggins CR. Melanoma. J Surg Oncol 2019;120:873-81.  Back to cited text no. 75
    
76.
Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015;136:E359-86.  Back to cited text no. 76
    
77.
van Meerbeeck JP, Fennell DA, De Ruysscher DK. Small-cell lung cancer. Lancet 2011;378:1741-55.  Back to cited text no. 77
    
78.
Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, et al. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. Eur J Cancer 2013;49:1374-403.  Back to cited text no. 78
    
79.
Yu JS, Chen YT, Chiang WF, Hsiao YC, Chu LJ, See LC, et al. Saliva protein biomarkers to detect oral squamous cell carcinoma in a high-risk population in Taiwan. Proc Natl Acad Sci U S A 2016;113:11549-54.  Back to cited text no. 79
    
80.
Giovannacci I, Vescovi P, Manfredi M, Meleti M. Non-invasive visual tools for diagnosis of oral cancer and dysplasia: A systematic review. Med Oral Patol Oral Cir Bucal 2016;21:e305-15.  Back to cited text no. 80
    
81.
Maleki D, Ghojazadeh M, Mahmoudi SS, Mahmoudi SM, Pournaghi-Azar F, Torab A, et al. Epidemiology of oral cancer in Iran: A systematic review. Asian Pac J Cancer Prev 2015;16:5427-32.  Back to cited text no. 81
    
82.
Liu D, Zhao X, Zeng X, Dan H, Chen Q. Non-invasive techniques for detection and diagnosis of oral potentially malignant disorders. Tohoku J Exp Med 2016;238:165-77.  Back to cited text no. 82
    
83.
Rivera C. Essentials of oral cancer. Int J Clin Exp Pathol 2015;8:11884-94.  Back to cited text no. 83
    
84.
Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: Data from the Surveillance, Epidemiology, and End Results Program. Cancer 2009;115:1531-43.  Back to cited text no. 84
    
85.
Yan K, Gao J, Yang T, Ma Q, Qiu X, Fan Q, et al. MicroRNA-34a inhibits the proliferation and metastasis of osteosarcoma cells both in vitro and in vivo. PLoS One 2012;7:e33778.  Back to cited text no. 85
    
86.
Amankwah EK, Conley AP, Reed DR. Epidemiology and therapies for metastatic sarcoma. Clin Epidemiol 2013;5:147-62.  Back to cited text no. 86
    
87.
Bacci G, Briccoli A, Rocca M, Ferrari S, Donati D, Longhi A, et al. Neoadjuvant chemotherapy for osteosarcoma of the extremities with metastases at presentation: Recent experience at the Rizzoli Institute in 57 patients treated with cisplatin, doxorubicin, and a high dose of methotrexate and ifosfamide. Ann Oncol 2003;14:1126-34.  Back to cited text no. 87
    
88.
Rainusso N, Wang LL, Yustein JT. The adolescent and young adult with cancer: State of the art – Bone tumors. Curr Oncol Rep 2013;15:296-307.  Back to cited text no. 88
    
89.
Jayson GC, Kohn EC, Kitchener HC, Ledermann JA. Ovarian cancer. Lancet 2014;384:1376-88.  Back to cited text no. 89
    
90.
Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J, Karlan BY. Ovarian cancer. Nat Rev Dis Primers 2016;2:1-22.  Back to cited text no. 90
    
91.
Tew WP, Muss HB, Kimmick GG, Von Gruenigen VE, Lichtman SM. Breast and ovarian cancer in the older woman. J Clin Oncol 2014;32:2553-61.  Back to cited text no. 91
    
92.
Longuespée R, Boyon C, Desmons A, Vinatier D, Leblanc E, Farré I, et al. Ovarian cancer molecular pathology. Cancer Metastasis Rev 2012;31:713-32.  Back to cited text no. 92
    
93.
Kleeff J, Costello E, Jackson R, Halloran C, Greenhalf W, Ghaneh P, et al. The impact of diabetes mellitus on survival following resection and adjuvant chemotherapy for pancreatic cancer. Br J Cancer 2016;115:887-94.  Back to cited text no. 93
    
94.
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018;68:7-30.  Back to cited text no. 94
    
95.
Neoptolemos JP, Stocken DD, Friess H, Bassi C, Dunn JA, Hickey H, et al. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N Engl J Med 2004;350:1200-10.  Back to cited text no. 95
    
96.
Simianu VV, Zyromski NJ, Nakeeb A, Lillemoe KD. Pancreatic cancer: Progress made. Acta Oncol 2010;49:407-17.  Back to cited text no. 96
    
97.
Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin 2014;64:9-29.  Back to cited text no. 97
    
98.
Rathmell WK, Godley PA. Recent updates in renal cell carcinoma. Curr Opin Oncol 2010;22:250-6.  Back to cited text no. 98
    
99.
Janzen NK, Kim HL, Figlin RA, Belldegrun AS. Surveillance after radical or partial nephrectomy for localized renal cell carcinoma and management of recurrent disease. Urol Clin North Am 2003;30:843-52.  Back to cited text no. 99
    
100.
Khan AP, Rajendiran TM, Ateeq B, Asangani IA, Athanikar JN, Yocum AK, et al. The role of sarcosine metabolism in prostate cancer progression. Neoplasia 2013;15:491-501.  Back to cited text no. 100
    
101.
Costello LC, Franklin RB. The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: Connecting the dots. Mol Cancer 2006;5:17.  Back to cited text no. 101
    
102.
Sadeghi RN, Karami-Tehrani F, Salami S. Targeting prostate cancer cell metabolism: Impact of hexokinase and CPT-1 enzymes. Tumour Biol 2015;36:2893-905.  Back to cited text no. 102
    
103.
Ben Sahra I, Laurent K, Giuliano S, Larbret F, Ponzio G, Gounon P, et al. Targeting cancer cell metabolism: The combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res 2010;70:2465-75.  Back to cited text no. 103