Effects of methadone on the toll-like receptor 4 expression in human non-small cell lung carcinoma A549 cell line using in-silico and in vitro techniques

Document Type : Original Article

Authors

1 Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran

2 Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

3 Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran

4 Department of Bioinformatics and Systems Biology, School Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

Abstract

Background: In this study, the effects of methadone and naloxone on the expression of toll-like receptor 4 (TLR4) gene have been evaluated in human non-small cell lung carcinoma A549 cell line migration using in-silico and in vitro techniques.
Materials and Methods: Lung cancer A549 cell cultures were stimulated for 24 h with methadone (5, 10, and 20 μM) and naloxone (20 and 40 μM) concentrations. The level of TLR4 expression was determined by the quantitative real-time polymerase chain reaction. Migration of the A549 cells was investigated after a 4-h incubation period with methadone using the Boyden Chamber assay.
Results: Migration rate of the A549 cells treated with 5 (P < 0.05) and 20 (P < 0.01) μM methadone was, respectively, increased and decreased with 20 μM naloxone (P < 0.05). Furthermore, the TLR4 expression was enhanced with 5 (P < 0.05) and 20 (P < 0.01) μM methadone and decreased with 20 (P < 0.05) and 40 μM naloxone (P < 0.01). In addition, in silico docking analysis revealed docking of methadone to MD-2 and TLR4.
Conclusion: According to the present DATA, methadone affects the TLR4 expression. It may however cause adverse consequences by increasing the TLR4 expression. Therefore, the useful analgesic properties of methadone should be separated from the unwanted TLR4-mediated side effects.

Keywords

1.
Barta JA, Powell CA, Wisnivesky JP. Global epidemiology of lung cancer. Ann Glob Health 2019;85:8.  Back to cited text no. 1
    
2.
Zhang HW, Wang F, Zhou YQ, Xu SP, Yu SY, Zhang ZG. Morphine suppresses liver cancer cell tumor properties in vitro and in vivo. Front Oncol 2021;11:666446.  Back to cited text no. 2
    
3.
Kim JY, Ahn HJ, Kim JK, Kim J, Lee SH, Chae HB. Morphine suppresses lung cancer cell proliferation through the interaction with opioid growth factor receptor: An in vitro and human lung tissue study. Anesth Analg 2016;123:1429-36.  Back to cited text no. 3
    
4.
Wang K, Wang J, Wei F, Zhao N, Yang F, Ren X. Expression of TLR4 in non-small cell lung cancer is associated with PD-L1 and poor prognosis in patients receiving pulmonectomy. Front Immunol 2017;8:456.  Back to cited text no. 4
    
5.
Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci 2021;78:1233-61.  Back to cited text no. 5
    
6.
Hu J, Xu J, Feng X, Li Y, Hua F, Xu G. Differential expression of the TLR4 gene in pan-cancer and its related mechanism. Front Cell Dev Biol 2021;9:700661.  Back to cited text no. 6
    
7.
Balducci C, Forloni G. The Role of Toll-Like Receptor 4 in Infectious and Non Infectious Inflammation. New York City: Springer; 2021.  Back to cited text no. 7
    
8.
Li J, Yang F, Wei F, Ren X. The role of toll-like receptor 4 in tumor microenvironment. Oncotarget 2017;8:66656-67.  Back to cited text no. 8
    
9.
Naderi J, Samani F, Amooheidari A, Javanmard SH, Vahabzadeh G, Vaseghi G. Evaluation of effects of morphine and ionizing radiation in cancer cell lines. J Cancer Res Ther 2019;15:S144-52.  Back to cited text no. 9
    
10.
Haghjooy-Javanmard S, Ghasemi A, Laher I, Zarrin B, Dana N, Vaseghi G. Influence of morphine on TLR4/NF-kB signaling pathway of MCF-7 cells. Bratisl Lek Listy 2018;119:229-33.  Back to cited text no. 10
    
11.
Ou T, Lilly M, Jiang W. The pathologic role of toll-like receptor 4 in prostate cancer. Front Immunol 2018;9:1188.  Back to cited text no. 11
    
12.
Gu J, Liu Y, Xie B, Ye P, Huang J, Lu Z. Roles of toll-like receptors: From inflammation to lung cancer progression. Biomed Rep 2018;8:126-32.  Back to cited text no. 12
    
13.
Nicholson AB, Watson GR, Derry S, Wiffen PJ. Methadone for cancer pain. Cochrane Database Syst Rev 2017;2:CD003971.  Back to cited text no. 13
    
14.
Maher DP, Walia D, Heller NM. Suppression of human natural killer cells by different classes of opioids. Anesth Analg 2019;128:1013-21.  Back to cited text no. 14
    
15.
Jantzie LL, Maxwell JR, Newville JC, Yellowhair TR, Kitase Y, Madurai N, et al. Prenatal opioid exposure: The next neonatal neuroinflammatory disease. Brain Behav Immun 2020;84:45-58.  Back to cited text no. 15
    
16.
Brawanski K, Brockhoff G, Hau P, Vollmann-Zwerenz A, Freyschlag C, Lohmeier A, et al. Efficacy of D, L-methadone in the treatment of glioblastoma in vitro. CNS Oncol 2018;7:CNS18.  Back to cited text no. 16
    
17.
Harper P, Hald O, Lwaleed BA, Kyyaly A, Johnston D, Cooper AJ, et al. The impact of morphine treatment on bladder cancer cell proliferation and apoptosis: In vitro studies. Exp Oncol 2018;40:190-3.  Back to cited text no. 17
    
18.
Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 2009;458:1191-5.  Back to cited text no. 18
    
19.
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 2009;30:2785-91.  Back to cited text no. 19
    
20.
Hutchinson MR, Lewis SS, Coats BD, Rezvani N, Zhang Y, Wieseler JL, et al. Possible involvement of toll-like receptor 4/myeloid differentiation factor-2 activity of opioid inactive isomers causes spinal proinflammation and related behavioral consequences. Neuroscience 2010;167:880-93.  Back to cited text no. 20
    
21.
Mostashari-Rad T, Arian R, Sadri H, Mehridehnavi A, Mokhtari M, Ghasemi F, et al. Study of CXCR4 chemokine receptor inhibitors using QSPR and molecular docking methodologies. J Theor Comput Chem 2019;18:1950018.  Back to cited text no. 21
    
22.
Wei F, Yang F, Li J, Zheng Y, Yu W, Yang L, et al. Soluble toll-like receptor 4 is a potential serum biomarker in non-small cell lung cancer. Oncotarget 2016;7:40106-14.  Back to cited text no. 22
    
23.
Jacobsen JH, Buisman-Pijlman FT, Mustafa S, Rice KC, Hutchinson MR. The efficacy of (+)-Naltrexone on alcohol preference and seeking behaviour is dependent on light-cycle. Brain Behav Immun 2018;67:181-93.  Back to cited text no. 23
    
24.
Zhang P, Yang M, Chen C, Liu L, Wei X, Zeng S. Toll-like receptor 4 (TLR4)/opioid receptor pathway crosstalk and impact on opioid analgesia, immune function, and gastrointestinal motility. Front Immunol 2020;11:1455.  Back to cited text no. 24
    
25.
Dana N, Vaseghi G, Haghjooy Javanmard S. Crosstalk between peroxisome proliferator-activated receptors and toll-like receptors: A systematic review. Adv Pharm Bull 2019;9:12-21.  Back to cited text no. 25
    
26.
Dana N, Vaseghi G. PPAR γ agonist, pioglitazone, suppresses melanoma cancer in mice by inhibiting TLR4 signaling. J Pharm Pharm Sci 2019;22:418-23.  Back to cited text no. 26
    
27.
Michalska M, Katzenwadel A, Wolf P. Methadone as a “tumor theralgesic” against cancer. Front Pharmacol 2017;8:733.  Back to cited text no. 27
    
28.
Theile D, Mikus G. Methadone against cancer: Lost in translation. Int J Cancer 2018;143:1840-8.